

Orthogonal Frequency Division Multiplexing
(OFDM) implementation as part of a Software

Defined Radio (SDR) environment

By

Christoph Sonntag

Thesis presented in partial fulfilment
Of the requirements for the degree of

Master of Electronic Engineering

Department of Electrical and Electronic Engineering
University of Stellenbosch

Private Bag X1, Matieland, 7602, South Africa

Supervisor: J. Lourens.

December 2005

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own

original work and has not previously in its entirety or in part been submitted at any

university for a degree.

Signature: Date:

Christoph Sonntag

 2

Abstract

Orthogonal Frequency Division Multiplexing (ODFM) has gained considerable

attention the past couple of years. In our modern world the need for faster data

transmission is never-ending. OFDM modulation provides us with a way of more

densely packing modulated carriers in the frequency domain than other existing

Frequency Multiplexing schemes, thus achieving higher data rates through

communications channels.

Software Defined Radio (SDR) creates a very good entry point for designing any

communications system. SDR is an architecture that aims to minimise hardware

components in electronic communications circuits by doing all possible processing in

the software domain. Such systems have many advantages over existing hardware

implementations and can be executed on various platforms and embedded systems,

given that the appropriate analogue front ends are attached to the system.

The purpose of this thesis is a study into Orthogonal Frequency Division Multiplexing

and its implementation as it is described in the IEEE 802.11a specifications. The

implementation in done in C++, and the software is written in a modular way, for easy

porting to the Software Defined Radio libraries and other platforms.

Afterwards, the OFDM software is tested, by decoding simulated as well as real-time

OFDM signals. All the results are captured and critically compared against theoretical

values and other existing systems. Finally the result of this thesis is a set of tested

C++ functions together with real-time and simulated performance results and a

detailed thesis explaining all the major issues involved.

 3

Opsomming

Ortogonale Frekwensie Deel Multipleksering (OFDM) is ‘n digitale modulasie

tegniek wat vir die afgelope paar jaar groeiende aandag ontvang het. In ons moderne

wêreld is die aanvraag vir vinniger data kommunikasiestelsels nimmer-eindigend.

OFDM modulasie tegnieke bied ‘n manier om gemoduleerde draer-seine meer

gekonsentreerd as ander bestaande Frekwensie Multiplekserende tegnieke in die

frekwensie spektrum in te pas. Dus kan OFDM gebaseerde sisteme, hoër data koerse

deur bestaande kommunikasie kanale handhaaf.

Sagteware Gedefinieerde Radio (SDR) bied ‘n goeie ingangspunt vir die ontwerp van

enige komunikasie sisteem. SDR is ‘n argitektuur wat poog om die aantal hardeware

komponente in elektroniese kommunikasie stroombane te minimeer deur alle

moontlike prosseering in sagteware te doen. Sulke sisteme het baie voordele bo

bestaande hardeware implementasies en kan op verskillende platforms en toegewyde

systeme uitgevoer word, indien die regte analoog koppelvlak voorsien word.

Die doel van die tesis is die studie van Ortogonale Frekwensie Deel Multipleksering

en die implementasie soos dit in die IEEE 802.11a spesifikasies beskryf word. Die

implementasie word gedoen in C++. Die sagteware moet in ‘n modulêre manier

geskryf word, vir maklike oordrag na die Sagteware Gedefinieerde Radio biblioteke

en ander platforms.

Uiteindelik sal die OFDM sagteware getoets word deur gesimuleerde en reële-tyd

OFDM seine te dekodeer. Alle toetsresultate word krities vergelyk teen verwagte

waardes en reeds bestaande sisteme. Die resultaat van die tesis is a stel getoetsde C++

programme, tesame met hulle simulasie en toets resultate, asook ‘n gedetailleerde

tesis wat alle belangrike kwessies volledig bespreek.

 4

Acknowledgements

I would like to thank the following people for their contributions to my thesis:

• My mom and dad, Alett and Ernst Sonntag, for their continuing love and

support; and for believing in me.

• My project supervisor, Prof. Johan Lourens, for his help and insight.

• The University of Stellenbosch for usages of the laboratory facilities.

 5

Glossary

ADC Analogue-to-Digital Converter

ADSL Asymmetric Digital Subscriber Line

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase-shift Keying

C++ C-Plus-Plus, programming language

DAB Digital Audio Broadcasting

DAC Digital-to-Analogue Converter

DFT Discrete Fourier Transform

DSL Digital Subscriber Line

DVB Digital Video Broadcasting

FEC Forward Error Correction

FFT Fast Fourier Transform

GHz Gigahertz (1000 MHz)

Fs Sampling Frequency

Hz Hertz (Cycles per second)

i,j The complex number

IDFT Inverse Discrete Fourier Transform

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse Fast Fourier Transform

kHz Kilohertz (1000 Hz)

LAN Local Area Network

Mbps Megabits per second (1048576 bits per second)

MHz Megahertz (1000 kHz)

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak-to-Average Power Ratio

PDF Probability Density Function

PPM Parts Per Million

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-shift Keying

RMS Root Mean Square

 6

Glossary

SDR Software Defined Radio

SER Symbol Error Rate

 7

Contents

Declaration . 2

Abstract. 3

Opsomming . 4

Acknowledgements. 5

Glossary. 6

Contents. 8

List of Figures. 15

List of Tables. 18

1. Introduction. 20

1.1 Introduction. 20

1.2 Orthogonal Frequency Division Multiplexing (OFDM) 20

1.3 Software Defined Radio (SDR). 21

1.4 Thesis Objectives . 22

1.5 Thesis Overview. 22

1.6 Synopsis on Thesis Results. 24

1.7 Conclusions . 25

2. An Overview of Digital Modulation Techniques and Frequency

 Division Multiplexing .

26

2.1 Introduction . 26

2.2 An Overview of Digital Modulation Techniques. 27

2.2.1 Amplitude Shift-Keying . 27

2.2.2 Phase Shift-Keying . 28

2.3 The Influence of Noise on Digital Modulation 30

2.3.1 Quantifying Additive White Gaussian Noise 31

2.3.2 Signal-To-Noise Ratio. 33

2.3.3 Probability of Error In QPSK Modulation. 34

2.4 An Overview of Frequency Division Multiplexing 43

2.5 Conclusions . 44

 8

Contents

3. OFDM Mathematics . 45

3.1 Introduction . 45

3.2 A Mathematical Approach to OFDM Symbols 45

3.2.1 Time Domain Analysis of OFDM Symbols 45

3.2.1 Frequency Domain Analysis of OFDM Symbols 47

3.3 The Issue of Orthogonality. 49

3.4 Conclusions . 51

4. Encoding and Decoding OFDM data symbols . 52

4.1 Introduction . 52

4.2 Analogue and Digital Domains . 52

4.3 Encoding OFDM Symbols. 55

4.3.1 Encoding Single OFDM Symbols. 56

4.3.2 Encoding Multiple OFDM Symbols . 57

4.4 Decoding OFDM Symbols. 59

4.4.1 Decoding Single OFDM Symbols. 59

4.4.2 Decoding Multiple OFDM Symbols. 60

4.5 Conclusions . 61

5. Identifying and Overcoming OFDM system performance influences . 62

5.1 Introduction . 62

5.2 Basic System Performance Influences. 62

5.2.1 Noise . 62

5.2.2 OFDM Symbol Synchronisation Issues 65

5.2.2.1 Initial OFDM Symbol Synchronisation 65

5.2.2.2 Continues re-synchronisation of OFDM data symbols . . 69

5.2.3 Multipath Effects on OFDM symbols. 73

5.2.4 Peak-to-Average Power Ratio. 75

5.2.4.1 OFDM Dynamic Range Issues . 76

5.2.4.2 Transmitted Amplifier Issues . 76

 9

Contents

5.2.5 Communications Channel Estimation. 77

5.2.6 System Performance Influences Conclusions 80

5.3 Advanced System Performance Improvements 80

5.3.1 Data Interleaving. 80

5.3.2 Sub-carrier Adaptive Bit Loading. 81

5.3.3 Spatial Multiplexing Techniques. 81

5.4 Conclusions . 81

6. IEEE 802.11a OFDM standard . 82

6.1 Introduction. 82

6.2 The IEEE 802.11a Standard. 82

6.2.1 The IEEE 802.11a Standard Overview . 82

6.2.2 The IEEE 802.11a Short Preamble Symbol 86

6.2.3 The IEEE 802.11a Long Preamble Symbol. 87

6.2.4 The IEEE 802.11a Signal Symbol. 89

6.2.5 The IEEE 802.11a Data Symbol . 90

6.2.5.1 Convolutional Encoding Of The Digital Data. 91

6.2.5.2 Mapping Digital Data Bits To Complex Coefficients. . . . 91

6.2.5.3 Mapping Of The Complex Coefficients To The

Frequency Spectrum Locations

91

6.2.5.4 Addition Of The Reference Carriers. 91

6.2.5.5 Converting The Data Symbol To Time Domain Signal . . 92

6.2.5.6 Addition Of The Guard Interval . 92

6.2.6 Transceiving The IEEE 802.11a Packets 92

6.3 Conclusions . 93

7. SDR implementation of an IEEE 802.11a OFDM system. 95

7.1 Introduction . 95

7.2 Implementation Overview . 96

7.3 Hardware Implementation . 98

 10

Contents

7.4 Software Implementation. 101

7.4.1 The Graphical User Interface . 101

7.4.2 The Software Structures . 105

7.4.2.1 The OFDM Specification Structure 105

7.4.2.2 The OFDM Receiver Structure. 106

7.4.2.3 The OFDM Receiver Structure. 107

7.4.2.4 The OFDM Comparer Structure . 108

7.4.2.5 The OFDM Audio Structure . 108

7.4.3 The Software Libraries . 109

7.4.3.1 The Main OFDM Library. 110

7.4.3.2 The OFDM Mathematics Library. 110

7.4.3.3 The OFDM Transmitter Library. 111

7.4.3.4 The OFDM Receiver Library . 112

7.4.3.5 The OFDM Comparer Library . 113

7.4.3.6 The OFDM Audio Library . 114

7.4.4 Conclusions on the Software Implementation. 114

7.5 The Complete IEEE 802.11a Transceiver System. 115

7.5.1 The IEEE 802.11a Transmitter . 115

7.5.1.1 The Encoding/Transmitting Process Overview 116

7.5.1.2 Initiating The OFDM Audio System 116

7.5.1.3 Initiating The Main OFDM Specifications. 117

7.5.1.4 Selecting an Appropriate Sound Device For Output 118

7.5.1.5 Initiating The OFDM Transmitter. 118

7.5.1.6 Loading The Appropriate Test Data. 120

7.5.1.7 Encoding The Test Data . 122

7.5.1.8 Adding AWGN To The Transmission 124

7.5.1.9 Transmitting The IEEE 802.11a OFDM Packet. 124

7.5.1.10 Conclusions On The Encoding/Transmitting Process . . 125

7.5.2 The IEEE 802.11a Receiver . 126

7.5.2.1 The Receiving/Decoding Process Overview. 127

7.5.2.2 Initiating The OFDM Audio System 127

 11

Contents

7.5.2.3 Initiating The Main OFDM Specifications. 127

7.5.2.4 Selecting an Appropriate Sound Device For Input. 127

7.5.2.5 Initiating The OFDM Receiver. 128

7.5.2.6 Decoding IEEE 802.11a Signals. 129

7.5.2.7 Loading a Compare File . 133

7.5.2.8 Comparing Received Data . 133

7.5.2.9 Saving The Transmission to File 134

7.5.2.10 Conclusions On The Receiving/Decoding Process. 134

7.5.3 Conclusions On The IEEE 802.11a Transceiver System 135

7.6 Conclusions . 135

8. OFDM system performance tests and results 136

8.1 Introduction . 136

8.2 Data Performance Tests and Results . 136

8.2.1 The Test Data Set . 137

8.2.2 Simulation Tests . 138

8.2.2.1 Simulation Test 1 . 138

8.2.2.2 Simulation Test 2 . 140

8.2.2.3 Simulation Test 3 . 142

8.2.2.4 Simulation Test 4 . 144

8.2.2.5 Simulation Test 5 . 146

8.2.2.6 Simulation Test 6 . 148

8.2.2.7 Simulation Test 7. 149

8.2.2.8 Simulation Test Conclusions . 151

8.2.3 Initial Sound Device Transmission Tests 151

8.2.3.1 Communications Channel Estimation. 152

8.2.3.2 Determining Sampling Frequency Drift. 153

8.2.3.3 AWGN Performance Tests. 154

8.2.3.4 Initial Sound Device Transmission Test Conclusions . . . 156

8.2.4 Real-time Buffered Transmission Tests. 157

8.2.4.1 The Test Data Set . 157

 12

Contents

8.2.4.2 AWGN Performance Tests. 157

8.2.4.3 Final IEEE 802.11a Decoder Performance Graph 159

8.2.4.4 Real Time Buffered Transmission Test Conclusions. . . . 160

8.3 Speed Performance Tests and Results . 160

8.3.1 Encoding Speed Tests . 160

8.3.2 Decoding Speed Tests. 161

8.3.3 Conclusions on Speed Performance Tests. 162

8.4 Conclusions . 164

9. Conclusions . 165

9.1 Introduction . 165

9.2 The IEEE 802.11a Standard and OFDM Modulation 166

9.3 Software Defined Radio. 168

9.4 Notes on the c++ Software. 168

9.5 SDR Performance Tests . 169

9.6 Future Work and Research. 170

9.7 Comparing Against Other Existing OFDM Systems. 170

9.8 Conclusions . 172

9.9 Thanks . 172

Appendix A: Useful Mathematical Proofs . 173

A.1 Useful Trigonometry Functions. 173

A.2 Finding the Zero-points of a Sync Waveform. 173

A.3 The RMS of a Sinus wave. 175

Appendix B: Digital Modulation Schemes. 177

B.1 BPSK constellation bit encoding. 177

B.2 QPSK constellation bit encoding. 178

B.3 16-QAM constellation bit encoding. 178

B.4 64-QAM constellation bit encoding. 179

 13

Contents

Appendix C: SDR OFDM program details. 181

C.1 The OFDM Specifications Structure Details. 181

C.2 The OFDM Transmitter Structure Details. 185

C.3 The OFDM Receiver Structure Details . 187

C.4 The OFDM Comparer Structure Details . 193

C.5 The OFDM Audio Structure Details . 194

C.6 The Main OFDM Library Functions . 195

C.7 The OFDM Math Library Functions . 195

C.8 The OFDM Transmitter Library Functions. 197

C.9 The OFDM Receiver Library Functions . 198

C.10 The OFDM Comparer Library Functions . 200

C.11 The OFDM Audio Library Functions . 201

Appendix D: SDR OFDM Included CD. 202

D.1 SDR OFDM Included CD. 202

Bibliography . 203

 14

List of Figures

Figure 2.1: An ASK digitally modulated bit stream. 27

Figure 2.2: A BPSK digitally modulated bit stream. 29

Figure 2.3: An example of a Gaussian noise signal . 32

Figure 2.4: The Gaussian probability distribution function 32

Figure 2.5: A constellation diagram of a QPSK encoded signal with AWGN. . 35

Figure 2.6: BER and SER vs. SNR of a QPSK modulated signal 42

Figure 2.7: Example of FDMA modulated signals, and their guard-bands 43

Figure 3.1: A real-time domain OFDM signal.. 46

Figure 3.2: The Fourier Transform of a rectangular window. 47

Figure 3.3: A magnitude spectrum OFDM signal. 48

Figure 4.1: The conversion of a continuous-time signal to a discrete-time

signal . 53

Figure 4.2: A graphical example of the single OFDM symbol encoding

process. 56

Figure 4.3: A graphical example of the multiple OFDM symbol encoding

processes . 58

Figure 4.4: A graphical example of the single OFDM symbol decoding

process. 59

Figure 4.5: An OFDM decoder incorrectly decodes an OFDM symbol due to

lack of OFDM symbol synchronisation . 61

Figure 5.1: A graphical example of an OFDM decoder with initial OFDM

symbol synchronisation. 66

Figure 5.2: A graphical example of initial OFDM symbol synchronisation

results using cross-correlation. 68

Figure 5.3: OFDM symbol de-synchronisation due to sampling frequency

drift . 70

Figure 5.4: Multipath effects causes delayed signals to reach the receiver 74

Figure 5.5: The effects of delay spread and the use of guard intervals. 75

Figure 6.1: An IEEE 802.11a standard packet format . 83

Figure 6.2: An IEEE 802.11a IDFT/IFFT function block. 85

 15

List of Figures

Figure 6.3: The IEEE 802.11a short preamble train. 87

Figure 6.4: The IEEE 802.11a long preamble train . 89

Figure 6.5: The IEEE 802.11a signal symbol bit assignment. 89

Figure 7.1: The intended IEEE 802.11a SDR transceiver system 99

Figure 7.2: The implemented IEEE 802.11a based system. 100

Figure 7.3: The OFDM encoding/decoding demo GUI 103

Figure 7.4: The implemented IEEE 802.11a OFDM transmitter flowchart 115

Figure 7.5: The OFDM audio initiation flowchart . 116

Figure 7.6: The main OFDM specifications initiation flowchart 117

Figure 7.7: The selection of an appropriate sound device for output flowchart. 118

Figure 7.8: The OFDM transmitter initiation flowchart. 119

Figure 7.9: The loading of a transmission file flowchart 120

Figure 7.10: The encoding of a IEEE 802.11a OFDM packet flowchart 123

Figure 7.11: Adding AWGN to the transmission signal flowchart. 124

Figure 7.12: Transmitting the IEEE 802.11a OFDM packet flowchart 125

Figure 7.13: The implemented IEEE 802.11a OFDM receiver flowchart 126

Figure 7.14: The OFDM receiver initiation flowchart . 128

Figure 7.15: Decoding an IEEE 802.11a packet from audio device flowchart. . 129

Figure 7.16: Decoding an IEEE 802.11a packet from a local file flowchart . . . 130

Figure 7.17: The IEEE 802.11a decoder state machine flowchart 130

Figure 7.18: The IEEE 802.11a decoder state 4, data decoder flowchart. 131

Figure 7.19: The IEEE 802.11a decoder state 3, statistics extraction flowchart. 131

Figure 7.20: The IEEE 802.11a decoder state 2, signal threshold detector

and state 1, initial OFDM symbol synchronisation flowchart 132

Figure 7.21: The IEEE 802.11a decoder sub-sample offset estimator

flowchart. 132

Figure 7.22: Loading a compare file flowchart. 133

Figure 7.23: Comparing received data flowchart . 134

Figure 7.24: Saving the received transmission to file flowchart. 134

Figure 8.1: Test Image 1. 137

 16

List of Figures

Figure 8.2: Test Image 2. 137

Figure 8.3: Test Image 3. 138

Figure 8.4: Test Image 4. 138

Figure 8.5: Test Image 5. 138

Figure 8.6: The results from Simulation Test 2 . 142

Figure 8.7: Simulation BER vs. SNR of the OFDM signal (with and

without the reference carrier phase compensation enabled) and

the theoretically expected QPSK modulated signal. 147

Figure 8.8: Simulation BER vs. SNR of the OFDM signal with reference

carrier phase compensation enabled, influenced by AWGN

and sampling frequency drift. 150

Figure 8.9: The impulse response of the communications channel and sound

device . 152

Figure 8.10: The transfer function of the communications channel and sound

device. 153

Figure 8.11: The calculated sub-sample offset and resulting sample frequency

drift . 154

Figure 8.12: Initial sound device transmission AWGN test, BER vs. SNR. . . . 156

Figure 8.13: Real-time buffered transmission AWGN test, BER vs. SNR. 158

Figure 8.14: Final real-time buffered transmission AWGN test, BER vs.

complete OFDM signal SNR .. 159

Figure 9.1: Implemented IEEE 802.11a transceiver comparison graph. 171

Figure B.1: BPSK constellation bit encoding .. 177

Figure B.2: QPSK constellation bit encoding .. 178

Figure B.3: 16-QAM constellation bit encoding. 178

Figure B.4: 64-QAM constellation bit encoding. 180

 17

List of Tables

Table 2.1: BER and SER vs. SNR for a QPSK modulated signal. 42

Table 4.1: The OFDM symbol encoding process . 57

Table 4.2: The OFDM symbol decoding process . 60

Table 6.1: The IEEE 802.11a timing parameters. 84

Table 6.2: Data rate dependant parameters of an IEEE 802.11a system. 85

Table 6.3: Contents of the IEEE 802.11a signal field 90

Table 6.4: IEEE 802.11a data symbol generation process. 90

Table 7.1: Differences between the intended IEEE 802.11a system and

the implemented system. 97

Table 7.2: Guide to the functions of the OFDM Encoding/Decoding Demo

GUI. 104

Table 7.3: Test image parameters . 121

Table 8.1: The three most important data performance tests. 137

Table 8.2: Simulation test 1 parameters. 139

Table 8.3: Simulation test 1 results . 139

Table 8.4: Simulation test 2 parameters. 141

Table 8.5: Simulation test 3 parameters. 143

Table 8.6: Simulation test 3 results . 143

Table 8.7: Simulation test 4 parameters. 145

Table 8.8: Simulation test 4 results . 145

Table 8.9: Simulation test 5 parameters. 146

Table 8.10: Simulation test 6 parameters. 148

Table 8.11: Simulation test 6 results . 149

Table 8.12: Simulation test 7 parameters. 149

Table 8.13: Initial sound device transmission test parameters. 155

Table 8.14: Real-time buffered transmission test parameters 158

Table 8:15: Speed test 1 parameters. 160

Table 8:16: Speed test 1 results . 161

Table 8.17: Speed test 2 parameters. 161

Table 8.18: Speed test 2 results . 162

 18

List of Tables

Table 8.19: IEEE 802.11a transmission times for full and low bandwidth

 signals . 162

Table B.1: BPSK encoding table . 177

Table B.2: QPSK encoding table. 177

Table B.3: 16-QAM encoding table. 178

Table B.4: 64-QAM encoding table. 179

Table C.1: The OFDM specification structure details. 181

Table C.2: The OFDM transmitter structure details . 185

Table C.3: The OFDM receiver structure details. 187

Table C.4: The OFDM comparer structure details. 193

Table C.5: The OFDM audio structure details. 194

Table C.6: The main OFDM library functions. 195

Table C.7: The OFDM math library functions. 195

Table C.8: The OFDM transmitter library functions. 197

Table C.9: The OFDM receiver library functions . 198

Table C.10: The OFDM comparer library functions . 200

Table C.11: The OFDM audio library functions . 201

 19

Chapter 1

Introduction

1.1 Introduction

This thesis basically consists of two major parts. The first part is a study of

Orthogonal Frequency Division Multiplexing and its implementation as it is described

in the IEEE 802.11a specifications. The second part is a look at Software Defined

Radio, an exciting new methodology, which attempts to minimise fixed hardware

components in electronic circuits by moving all possible processing to the software

domain. The aim of this thesis is a basic IEEE 802.11a OFDM transceiver system

written in a modular form in C++ for future implementation in embedded SDR

systems.

1.2 Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) is a frequency multiplexing

technique that has gained considerable attention the past few years. This multicarrier

transmission technique densely squeezes multiple modulated sub-carriers closely

together in the frequency domain, for more efficient bandwidth usage, opposed to

other frequency division multiplexing systems. OFDM is already used in various

communications systems including Digital Subscriber Line (DSL) systems, Digital

Audio and Digital Video Broadcasting (DAB, DVB) [3,12] and wireless LAN

systems called WIFI based on the IEEE 802.11a specifications [1,2].

The modulated sub-carriers within an OFDM symbol are orthogonal to each other,

which means that they do not interfere with each other. Sub-carrier orthogonality is

accomplished by exploiting the properties of the symbol windowing function and by

choosing precise sub-carrier frequencies. Sub-carriers are encoded using different

digital modulation techniques such a Binary Phase-shift Keying (BPSK), Quadrature

Phase-shift Keying (QPSK) and Quadrature Amplitude Modulation (QAM).

 20

OFDM offers many advantages above single carrier modulation schemes, and is a

very good candidate for noisy office environments. The narrow-band multi-carrier

modulation does not require any channel equalisation [3], and is very good at

mitigating the effect of narrowband interference and frequency selective fading [12].

OFDM is also very good at mitigating the effects of time dispersions. The long

OFDM symbol periods helps combat inter-symbol interference (ISI)

A digital communications system utilising an OFDM modulation scheme could

theoretically use available bandwidth more efficiently than many other schemes. By

breaking the bandwidth up into smaller sections, different sub-carrier modulation

schemes could be used (sub-carrier bit loading [12]), depending on the quality of each

section of bandwidth, which makes OFDM efficient, flexible and adaptable to

changing environments.

1.3 Software Defined Radio (SDR)

Software Defined Radio (SDR) is a communications architecture that aims to

minimise the use of fixed hardware components in electronic circuits by moving all

possible processing to a software domain. Such a system has the advantage of being

highly flexible. A generic hardware platform could become any radio communications

device, depending upon the software loaded onto the embedded processor, the RF

front end, the sampling rate and the processor power available to the software.

The advantages of such systems are numerous and make it an ideal candidate for

developing and testing a communications system. SDR systems are easily

upgradeable, not needing any hardware changes, only a simple software upload,

which in the future, could even be done “over the air” using appropriate software

boot-loaders. Reusable software components in different projects has the ability of

significantly reducing system design times, which means faster prototyping and faster

time to market of final products.

Software Defined Radio is definitely a methodology that will become more popular in

the future, and will increase in popularity as embedded processors and digital solid-

state memory become more powerful and shrink in size.

 21

1.4 Thesis Objectives

The objective of this thesis is to:

• Introduce the reader to OFDM modulation systems and its advantages and

disadvantages over existing FDMA systems.

• Introduce the reader to existing digital modulation techniques and how it is

related to OFDM modulation.

• Study the mathematics behind OFDM, study the encoding and decoding

process, and develop means of digitally implementing such a system.

• Identifying and overcoming the main OFDM system performance influencing

factors.

• Introducing the reader to the IEEE 802.11a standard of OFDM modulation.

• Implementing and IEEE 802.11a based OFDM system in software for use in a

Software Defined Radio environment.

• Simulating the IEEE 802.11a OFDM system, measuring its performance and

capturing vital results and statistics.

• Implementing a real-time IEEE 802.11a OFDM system, measuring its

performance and capturing vital results and statistics.

• Comparing and critically analysing simulation and real-time OFDM

performance results.

• Concluding on all findings and results and suggesting on further research in

the area.

1.5 Thesis Overview

The structure of this thesis is as follows:

Chapter 1: Introduction

• A literature study into OFDM and SDR, its advantages and disadvantages,

also stating the objectives of this thesis and a brief synopsis on the results and

findings of the simulations and real-time implementation tests of the OFDM

transceiver system.

 22

Chapter 2: An Overview of Digital Modulation Techniques and Frequency

Division Multiplexing

• An overview of existing digital modulation techniques, as well as how

Frequency Division Multiplexing works. Introducing the fundamental

encoding techniques, which forms the basis of OFDM encoding.

Chapter 3: OFDM Mathematics

• A detailed study of the mathematics behind OFDM, describing its workings in

both the time domain and the frequency spectrum. The important issue of

orthogonality is also discussed and proved.

Chapter 4: Encoding and Decoding OFDM Data Symbols

• A detailed look at the digital implementation of encoding and decoding single

OFDM data symbols, and then expanding it to encode and decoded OFDM

symbol trains.

Chapter 5: Identifying and Overcoming OFDM System Performance Influences

 (Problems due to real life factors)

• In practice, data transmission over analogue channels is prone to various

performance influencing factors like noise, synchronisation, multipath

interference, peak-to-average power ratio issues and communications channel

estimation. Here we examine most of these factors, and introduce methods for

overcoming them.

Chapter 6: IEEE 802.11a OFDM Standard

• The IEEE 802.11a standard incorporates OFDM modulation with some set

parameters. It is a robust standard with the ability to overcome many of the

major OFDM problems introduced by real-life factors. In this chapter the

IEEE 802.11a standard is examined and its workings described in detail.

 23

Chapter 7: SDR Implementation of an IEEE 802.11a OFDM System

• A working implementation of the IEEE 802.11a system is one of the main

purposes of this thesis. This chapter fully describes the design decisions, how

the software works, as well the as the test platform it is tested on and the test

program it is tested with. It also includes some recommendations for future

implementations of the system.

Chapter 8: OFDM System Performance Tests and Results

• To determine how well the software works, it will need to be tested. In this

chapter the OFDM software is tested, by first decoding simulated OFDM

signals, influenced by noise and sampling frequency drift. Finally the real-time

buffered implementation is tested. Vital performance statistics are captured

and compared against theoretical values as well as other existing systems.

Chapter 9: Conclusions

• Concluding on OFDM and SDR, mentioning the most important facts about

the system, like the 2.2 dB implementation loss and the current encoding and

decoding times; concluding on the OFDM system performance and

recommendations for future OFDM and SDR systems.

Appendix

• The appendices include some mathematical proofs used in the thesis as well as

additional information about modulation techniques and the implemented

OFDM system.

1.6 Synopsis on Thesis Results

OFDM is a very attractive modulation technique especially for office environments

where high data rates are a necessity but where the relatively long multi-path delays

and possible narrow-band interference could cause big problems for high-speed single

carrier modulation techniques. OFDM also has its fair share of disadvantages and

performance influencing factors that are addressed in this thesis. The implemented

IEEE 802.11a transceiver system works well but has an approximate 2.2dB

 24

implementation loss. The implementation loss is a mainly the result of noise on the

OFDM reference sub-carriers and could be improved by better programming.

1.7 Conclusions

OFDM and SDR has been introduced as well as the plan to combine them and design

an IEEE 802.11a OFDM transceiver system in software that can later be ported to

SDR platforms. The thesis objectives have also been stated as well as a quick

overview of the thesis as a whole. In the next chapter we will look at different digital

modulation techniques, which forms the basis of OFDM modulation, as well as more

detail on FDMA and how it relates to OFDM.

 25

Chapter 2

An Overview of Digital Modulation

Techniques and Frequency Division

Multiplexing

2.1 Introduction

OFDM modulation is a multi-carrier modulation technique, which is based on existing

digital modulation techniques. OFDM sub-carriers are orthogonal to each other,

which means that, under normal circumstances, the sub-carriers do not influence each

other in any way. The performance of an OFDM modulated system is thus directly

influenced by the performance of the individual sub-carriers. Studying single carrier

digital modulation techniques gives us a clearer picture of how a large OFDM system

should perform. Furthermore OFDM is a special subset of a multiplexing

methodology called Frequency Division Multiple Access (FDMA). Both OFDM and

FDMA multiplex multiple sub-carriers in the frequency spectrum. In the case of

FDMA systems, adjacent sub-carriers are placed far enough from each other to avoid

their individual bandwidths from overlapping, which would result in inter-carrier

interference, and degradation in the encoded data. Furthermore, because FDMA sub-

carriers are usually decoded separately the distance between sub-carriers should be

large enough to allow for the band-pass filtering of the selected sub-carrier; this

distance is usually referred to as the guard band. In the case of OFDM systems, the

bandwidths of adjacent sub-carriers are allowed to overlap, given that certain criteria

are met which insure sub-carrier orthogonality. All the sub-carriers within an OFDM

symbol are encoded and decoded together, which removes the need for a guard band,

and increases bandwidth efficiency.

 26

2.2 An Overview of Digital Modulation Techniques

The process of encoding digital bit data into an analogue representation of the data is

usually referred to as “shift keying”. The most basic “shift keying” techniques encode

digital data onto sinusoidal waveforms by manipulating the amplitude, frequency or

phase of the sinusoidal waveform.

2.2.1. Amplitude-Shift Keying (ASK)

One of the most basic digital modulation techniques is called Amplitude-Shift Keying

(ASK). ASK encodes digital data bits on to a sinusoidal carrier wave by manipulating

the amplitude of the sinusoid.

Figure 2.1: An ASK digitally modulated bit stream of {1,0,1,1,0}. The top figure is

the digital data bits m(t), the second figure is the sinusoidal carrier wave and the third

figure is the ASK modulated signal.

The digital bits are represented either by a 1 or a 0 and can be expressed as

{ }m(t) 0,1 .= (2.1)

 27

The ASK digitally modulated signal can be expressed as

Cs(t, f) m(t)Acos(2 f t)C= π + φ (2.2)

or in a complex form as

[]C C C Cs(t, f) m(t)A (f) m(t)A cos(2 f t) i sin(2 f t)= ∠φ = π + φ + π +φ (2.3)

2.2.2 Phase-Shift Keying (PSK)

Another more popular digital modulation technique is called Phase-Shift Keying

(PSK). PSK encodes digital data bits onto a sinusoidal carrier wave by manipulating

the phase of the sinusoid. PSK is a very popular technique because of its high

immunity to noise. The most basic PSK technique is called Binary Phase-Shift

Keying (BPSK). The digital bits are represented either by a 1 or a 0 and can be

expressed as

{ }m(t) 0,1 .= (2.4)

The digital bits are mapped to phase angles, and in the case of BPSK, the 0 is mapped

to 0 radians and the 1 is mapped to π radians. The mapped bits can be expressed as

{ }r(t) m(t) 0, .= π = π (2.5)

The BPSK digitally modulated signal can be expressed as

C Cs(t, f) A cos(2 f t r(t))= π + (2.6)

or a in complex form as

[]C C C Cs(t, f) A r(t)(f) A cos(2 f t r(t)) i sin(2 f t r(t))= ∠ = π + + π + . (2.7)

 28

The same signal can also be expressed as a complex exponential as

cj2 f t r (t)

C Cs(t, f) A r(t)(f) Ae π += ∠ = (2.8)

which then finally becomes

() c

c

j2 f t j2 f tjr (t)
Cs(t, f) Ae e C eπ= = c

f
π . (2.9)

CfC is the complex coefficient that describes the amplitude and phase of the carrier

wave at frequency . This is a popular method of describing modulated signals and

is also used in describing IEEE 802.11a OFDM signals. Refer to Sections 3.2.1, 6.2.2,

6.2.3 and 6.2.5.4 to see how the complex coefficients are implemented in OFDM

modulation.

Cf

Figure 2.2: A BPSK digitally modulated bit stream of {1,0,1,1,0}. The top figure is

the digital data bits m(t), the second figure is the sinusoidal carrier wave and the third

figure is the BPSK modulated signal.

 29

It is possible to increase the encoding capabilities of PSK modulation schemes by

mapping additional data bits to additional sinusoid phases. One of the most popular

PSK methods is called Quadrature Phase-Shift Keying. It encodes two digital bits on

to a sinusoidal carrier by using four possible phase angles. The digital bits it can

encode is expressed by

{ }m(t) 00,01,10,11 .= (2.10)

The resulting phase angles is given by

{ }r(t) 4,3 4,5 4,7 4 .= π π π π (2.11)

It is further possible to combine ASK and PSK modulation to produce a modulation

technique called Quadrature Amplitude Modulation (QAM). QAM has the ability to

encode data bits to various sinusoid phases and amplitudes.

Selecting an appropriate digital modulation scheme is a complicated matter. Many

factors has to be taken into account, for example, transmitter complexity and power,

receiver complexity and sensitivity, transmission channel quality as well as the effects

that noise has on the quality of the modulated signals. Noise influences the

modulation schemes in different ways. For the purpose of this thesis, only the QPSK

modulation scheme is going to be examined further. For more information about all

the different modulation schemes please refer to [7,8,9].

2.3 The Influence of Noise on Digital Modulation

Noise can be described as unwanted random (typically electromagnetic) interference

that degrades the quality of signals. There exist two different types of noises.

Additive White Gaussian Noise (AWGN) is interference with a flat frequency

spectrum [11]. This means that the long-term influence of AWGN is the same for all

the frequency elements in a signal. The source of AWGN is radiation picked up from

 30

radio transmissions and thermal noise picked up by hardware. The effects of AWGN

can be estimated and quantified my means of statistic analysis.

Coloured noise is interference with a non-flat frequency spectrum. This means that the

long-term influence of coloured noise is different for different frequency elements in a

signal. The source of coloured noise could be many things like electrical interference

from fast switching power supplies. The effects of coloured noise cannot be easily

estimated and influences signal quality in unpredictable ways. Coloured noise will not

be discussed in this thesis, since it is not a signal processing problem, but an

electronic design problem, which can only be solved by analysing complete electronic

system designs, and shielding electronic components from the noise sources.

2.3.1 Quantifying Additive White Gaussian Noise

AWGN signals are purely random and it is impossible to predict its instantaneous

value at any time. Since noise has amplitudes that vary randomly with time, it can

only be quantified by probability density functions. A probability density function

relates a signal value with a probability of such a signal occurring. AWGN has a

Gaussian probability density function, given by the formula [10],

2

2
(x x)
2

2

1p(x) e .
2

− −
σ=

πσ
 (2.12)

The two main parameters of a gaussian probability density function is:

• The mean or expected value of the noise, given by x , which is zero for

AWGN.

• The standard deviation of the noise, given by σ , is the RMS value of the noise

signal.

Since instantaneous noise signals are totally random, it is impossible to predict the

possibility of a certain discrete value occurring. It is possible though to calculate the

possibility of a the noise signal being in a certain range [a,b], and it is given by the

probability function P(x),

 31

2

2
(x x)b b
2

2
a a

1P(a x b) p(x)dx e dx.
2

− −
σ< < = =

πσ
∫ ∫ (2.13)

Figure 2.3: An example of a Gaussian Noise signal. (RMS = 1)

It is thus possible to calculate the possibility of a noise signal occurring with a certain

range of values, if the RMS value of that noise signal is known.

Figure 2.4: The Gaussian Probability Distribution Function.

 32

2.3.2 Signal-To-Noise Ratio

AGWN is additive, which means that the noise signal adds to the existing signal,

resulting in a distorted version of the original signal.

S(t,fc) U(t,fc)=S(t,fc)+n(t,σ)

 n(t,σ) (the noise)

It is possible to determine the quality of a digitally modulated signal influenced by

AWGN using the probability density function and the standard deviation of the noise

signal. Signal quality is defined as the ratio [7] of signal power over noise power,

called the Signal-to-Noise Ratio

2

rms

rms

s (t, fc)Signal PowerSNR .
Noise Power n (t,)

⎛ ⎞
= = ⎜ σ⎝ ⎠

⎟ (2.14)

Digital modulation uses sinusoidal carrier waves, of which the RMS value can easily

be calculated as ()1 2 A 1. The Signal-to-Noise ratio (power) of a digitally

modulated sinusoid influenced by AWGN, then becomes

2 21 ASNR .

2
⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ σ⎝ ⎠⎝ ⎠

 (2.15)

A popular way of expressing the Signal-to-Noise ratio, is by means of its decibel

value,

2 2

dB 10 10 10
1 A 1 ASNR 10log (SNR) 10log 20log
2 2

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞= = =⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎬σ σ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭⎪ ⎪⎩ ⎭
. (2.16)

1 Appendix A.3 (Calculating the RMS value of a sine wave)

 33

2.3.3 Probability of Error in Quadrature Phase Shift-Keying Modulation

Noise degrades the quality of modulated signals. This ultimately leads to modulated

signals being demodulated incorrectly and the decoded digital data bits being wrong.

Because of the randomness of AWGN, it is impossible to predict the exact locations

of incorrectly decoded bits; it is however possible to theoretically predict the amount

of incorrectly decoded bits in the long run, and from that calculate error probabilities

like the symbol-error rates and bit-error rates.

QPSK modulation encodes two data bits into a sinusoidal carrier wave by altering the

sinusoidal carrier wave’s phase. We can define the four separate QPSK symbols as

11 C Cs (t, f) A cos(2 f t 4); if m(t)=11,π + π� (2.17)

01 C Cs (t, f) A cos(2 f t 3 4); if m(t)=01,π + π� (2.18)

00 C Cs (t, f) A cos(2 f t 5 4); if m(t)=00,π + π� (2.19)

10 C Cs (t, f) A cos(2 f t 7 4); if m(t)=10.π + π� (2.20)

If these symbols are then subjected to noise, the resultant noisy symbols can be

expressed as

 11 C 11 Cu (t, f) u (t, f) n(t,),= + σ (2.21)

 01 C 01 Cu (t, f) u (t, f) n(t,),= + σ (2.22)

 00 C 00 Cu (t, f) u (t, f) n(t,),= + σ (2.23)

 10 C 10 Cu (t, f) u (t, f) n(t,).= + σ (2.24)

To clearly see the effects of the noise on the modulated symbols, it is useful to display

the symbols and the noise on a constellation diagram. A constellation diagram

transforms sinusoidal symbols into their amplitude and phase components. Figure 2.5

shows the QPSK constellation diagram with probability density functions showing the

effects of noise at each symbol. A QPSK decoder will decode the digital data bits

depending upon which quadrant the received symbol is located. It is possible for noise

 34

to add to a symbol and corrupt its amplitude so much that it ends up in an incorrect

quadrant, and thus decoding the data bits incorrectly. This is called a symbol error.

Figure 2.5: A constellation diagram of a QPSK encoded signal with AWGN

In order to calculate symbol error probabilities we first view the problem in one

dimension. The probability that a QPSK decoder will incorrectly decode a symbol

 given that the correct transmitted symbol was in fact a is given by the formula 00u 10s

2

2
(x A 2)0

2
00 10 2

1P(u | s) P(x 0) e dx.
2

− −
σ

−∞

= −∞ < < =
πσ

∫ (2.25)

The probability function then reduces to

2A 2 (y)

2
00 10

1P(u | s) e dy.
2

− σ −

−∞

=
π ∫ (2.26)

 35

Unfortunately this function is not directly solvable and lookup tables are used to

determine the results. There exists a function, though, that is closely related to the

above probability function. The Q-function [10], is defined as

2x

2

x

1Q(x) e dx.
2

∞ −

π∫� (2.27)

We can then rewrite the probability function (2.26) in terms of the Q-function defined

in (2.27) so that

00 10
AP(u | s) Q .
2

⎛= ⎜
⎞
⎟σ⎝ ⎠

 (2.28)

Using the same procedure it is possible to calculate the probability that the QPSK

decoder will incorrectly decode a symbol given that the correct transmitted

symbol was in fact a as

11u

10s

11 10
AP(u | s) Q .
2

⎛= ⎜
⎞
⎟σ⎝ ⎠

 (2.29)

Furthermore there is also the remote possibility that the QPSK decoder will

incorrectly decode a symbol given that the correct transmitted symbol was in fact

a . This is however only possible when the noise signal is large enough so that in

the horizontal dimension was incorrectly decoded as and in the vertical

dimension was incorrectly decoded as . The probability of a symbol to be

incorrectly decoded as a is thus given by

01u

10s

10s 00u

10s 11u 10s

01u

01 10 00 10 11 10P(u | s) P(u | s)P(u | s)= (2.30)

which gives

2
01 10

AP(u | s) Q .
2
+⎛= ⎜

⎞
⎟σ⎝ ⎠

 (2.31)

 36

Finally it is possible to calculate the total probability that a symbol will be decoded

incorrectly as the probability that will either be incorrectly decoded as a

symbol, a symbol or a symbol. In cases like this, it is easier to calculate error

probabilities through the use of correctness probabilities, which is given by

10s

10s 11u

00u 01u

CP 1 P.= − (2.32)

The probability that a symbol will be decoded correctly as a symbol is thus the

product of symbol being decoded correctly in terms of the other three quadrants.

This is given by

10s 10u

10s

C 10 C 00 10 C 11 10 C 01 10P (s) P (u | s)P (u | s)P (u | s)= (2.33)

which becomes

C 10 00 10 11 10 01 10P (s) (1 P(u | s))(1 P(u | s))(1 (P(u | s))= − − − (2.34)

and can then be written in terms of the Q-function as

2
C 10

A AP (s) 1 Q 1 Q 1 Q
2 2

⎡ ⎤ ⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎢ ⎥ ⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟
A
2

⎤
⎥σ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.35)

which then finally reduces to

3 4
C 10

A AP (s) 1 2Q 2Q Q .
2 2

⎛ ⎞ ⎛ ⎞ ⎛= − + −⎜ ⎟ ⎜ ⎟ ⎜
A
2

⎞
⎟σ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.36)

Converting to error probability, the probability for the single symbol error in a QPSK

decoder is given as

10 10
AP(u | s) 2Q .
2

⎛≈ ⎜
⎞
⎟σ⎝ ⎠

 (2.37)

 37

Using the above procedures, it is possible to prove that the symbol error probability

for the other combinations is exactly the same:

00 00 01 01 10 10 11 11
AP(u | s) P(u | s) P(u | s) P(u | s) 2Q .
2

⎛= = = ≈ ⎜ σ⎝ ⎠

⎞
⎟ (2.38)

The total symbol error rate (SER) of a QPSK decoder can finally be calculated as the

average symbol error probability of , , and

. The SER thus becomes

00 00P(u | s) 01 01P(u | s) 10 10P(u | s)

11 11P(u | s)

00 00 00 01 01 01

10 10 10 11 11 11

SER P(u | s)P(s) P(u | s)P(s)
 P(u | s)P(u) P(u | s)P(u)

= +
+ +

 (2.39)

which then becomes

[]00 01 10 11
ASER 2Q P(u) P(u) P(u) P(u) .
2

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟σ⎝ ⎠⎣ ⎦
+ (2.40)

It is impossible to calculate the probability of each symbol occurring, but because we

know the QPSK decoder will always choose one of the possible four quadrants, the

sum of the probabilities are equal to one.

[]00 01 10 11P(u) P(u) P(u) P(u) 1.+ + + = (2.41)

The symbol error rate for a QPSK decoder is thus

ASER 2Q .
2

⎛= ⎜
⎞
⎟σ⎝ ⎠

 (2.42)

A more useful form of expressing error rates is by using the QPSK Bit Error Rate. A

QPSK symbol encodes two digital data bits, but because of the way the digital data

 38

bits are located in the constellation, a single QPSK symbol error, will in most cases

result in only one bit error. The bit error rate (BER) is thus only half of the SER for

QPSK decoders. BER gives the estimated amount of erroneous decoded bits due to

noise. The Bit Error Rate for a QPSK decoder is thus

ABER Q .
2

⎛= ⎜
⎞
⎟σ⎝ ⎠

 (2.43)

The symbol error rates and bit error rates can further be expressed as a function of the

Signal-to-Noise Ratio, so that

()SER 2Q SNR= (2.44)

and

()BER Q SNR .= (2.45)

The SER and BER can be rewritten in another perhaps more popular method of

describing the SNR, through the use of the bit energy and the noise power density

[8,9]. Firstly the noise power density is equal to the noise power divided by the

bandwidth it occupies,

n

NNo .
B

= (2.46)

The symbol energy, ES, of the symbol is equal to the symbol power, C, divided by the

symbol rate, RS, so that,

S
S

CE
R

= . (2.47)

The symbol energy to noise power density ratio, can be calculated as

S n

S

E BC .
No R N

= (2.48)

 39

As already mentioned the bit rate of a QPSK encoded signal is twice the symbol rate,

because each symbol can encode 2 bits. Equation (2.48) can thus be rewritten in terms

of bit energy, EB, and bit rate, RB, to give the bit energy to noise power density ratio,

also known as the Eb/No ratio [8]:

B

B

E 1 C .
No 2 R N

= nB (2.49)

The bit rate is equal to twice the signal rate, which is also the Nyquist sampling rate of

the signal. If the receiving filter filters the signal at this frequency, then the noise

bandwidth is equal to the bit rate so that RB = BN. Equation (2.49) can thus be

rewritten as

BE 1 C .
No 2 N

= (2.50)

The power of a sine wave is equal to the square of the RMS amplitude of the sine

wave. Thus the symbol power becomes

2
RMSC A .= (2.51)

In the same way, the power of an AWGN signal is the square of the RMS of the noise,

which is also the standard deviation of the AWGN,

2
RMSN n .2= = σ (2.52)

Equation (2.50) can now be rewritten in terms of (2.51) and (2.52) as

2
RMSB

2

AE 1 .
No 2

=
σ

 (2.53)

 40

Equation (2.53) can now be rewritten in terms of the SNR power ratio from Equation

(2.15) to give

B2ESNR .
No

= (2.54)

This means that the SER and BER for QPSK signals can now be rewritten in terms of

the Eb/No ratio as [9]:

B2ESER 2Q
No

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟ (2.55)

and

B2EBER Q .
No

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟ (2.56)

Equation (2.55) and (2.56) corresponds to the results for probability of error binary

modulation. [8,9]

Figure 2.6 shows the graph of the error probabilities versus the SNR values.

 41

Figure 2.6: BER and SER vs. SNR of a QPSK modulated signal.

Table 2.1 shows the error probabilities versus the SNR values

Signal-to-Noise Ratio (dB) Bit Error Rate (BER) Symbol Error Rate (SER)

0 7,86e-2 1,57e-1

1 5,63e-2 1,126e-1

2 3,75e-2 7,5e-2

3 2,3e-2 4,16e-2

4 1,25e-2 2,5e-2

5 6,0e-3 1,2e-2

6 2,4e-3 4,8e-3

7 7,7e-4 1,5e-3

8 1,9e-4 3,8e-4

9 3,36e-5 6,73e-5

10 3,87e-6 7,74e-6

Table 2.1: BER and SER vs. SNR of a QPSK modulated signal

 42

From these results is it clear to see that noise degrades the quality of transmitted

signals and causes errors the transmitted digital data. These values are theoretical; a

practical system might not be able to achieve these rates, but should always strive to

be as close as possible.

2.4 An Overview of Frequency Division Multiplexing

Frequency Division Multiple Access (FDMA) is a methodology that enables multiple

signals to simultaneously co-exist in the frequency spectrum, by being placed at non-

overlapping frequencies. The original signals are modulated and up-converted at

carrier frequencies high enough to be transmitted as electromagnetic waves. In order

do decode the data in single FDMA sub-carriers, all the adjacent sub-carriers need to

be removed in order to minimise cross-band interference. Bandpass filtering of the

selected sub-carrier removes all other sub-carriers. Practical filters cannot have

infinitely sharp cut-offs.

Figure 2.7: Example of FDMA modulated signals, and their guard-bands (G)

This means that the edges of the filter, at which point the filter starts attenuating

undesired signals, will not falloff instantaneously. The filters need some bandwidth to

falloff and attenuate out of band signals sufficiently. This means that adjacent FDMA

sub-carriers can’t be placed exactly next to each other; some space between them is

needed for the filters. These spaces between sub-carriers are called guard-bands.

Guard-bands use up frequency space that could be used for extra sub-carriers, thus

reducing bandwidth efficiency.

 43

FDMA is used in many applications, including FM radio transmission, Digital

European Cordless Telephones (DECT) and Advanced Mobile Phone System

(AMPS) cell phones.

2.5 Conclusions

This chapter introduced some basic digital modulation schemes, which forms the

basis of OFDM modulation, including QPSK, which is used in the practical

implementation of the OFDM system. The important issue of noise and digital

modulation error probabilities where examined up to a point where the theoretical bit-

and symbol error rates were calculated. These values will be used later in comparisons

with the OFDM system, and to determine its efficiency. Furthermore, OFDM is just a

special case of FDMA, and the look at FDMA provides useful insights and shows the

advantages of OFDM over FDMA. In the next chapter we look at the mathematics

behind OFDM in order to understand it better and to see how it relates to single

carrier digital modulation techniques, as the ones examined in this chapter.

 44

Chapter 3

OFDM Mathematics

3.1 Introduction

Before digitally implementing an OFDM system, it is important to study the

mathematics behind OFDM systems. An in-depth study of the mathematics will show

how digital data bits are encoded into OFDM symbols, and how the digital data bits

can be decoded from them as well. The issue of orthogonality will also be discussed

and proved in this chapter.

3.2 A Mathematical Approach to OFDM Symbols

An OFDM symbol can be described as the result of a number of summated, digitally

modulated sub-carriers at certain very specific frequencies, multiplied with a

rectangular window of a very specific length. To completely understand the inner

workings of OFDM, is should be studied in both the time domain and the frequency

domain.

3.2.1. Time-Domain Analysis of OFDM Symbols

The rectangular window function has an amplitude of AW, a width of tW and is also

shifted by tW seconds. The rectangular window is given by

w
W

w

t tw(t) A
t

⎛ ⎞−
= ∏⎜

⎝ ⎠
⎟ . (3.1)

The sub-carriers all have the same amplitude of A. The summed sub-carriers are given

by

 (3.2)
C 1

c C
c 0

c(t) [AS (t, f)],
−

=

= ∑

 45

where is a digitally modulated sine wave as described in Section 2.2.2. The

time-domain expression for an OFDM symbol is simply the product of the rectangular

windowing function and the sub-carriers, see Figure 3.1, and is given by

c CS (t, f)

C 1

w
c c C W

c 0 w

t to (t) w(t)c(t) [AS (t, f)] A .
t

−

=

⎛ ⎞−⎡ ⎤
= = ∏⎜⎢ ⎥

⎣ ⎦ ⎝ ⎠
∑ ⎟ (3.3)

Equation (3.3) can be rewritten so that the sub-carriers can be expressed as complex

exponentials as determined in (2.9)

()C

C 1
j 2 f t w

c c W
c 0 w

t to (t) AC e A .
t

−
− π

=

⎛ ⎞−⎡ ⎤
= ⎜⎢ ⎥
⎣ ⎦ ⎝ ⎠
∑ ∏ ⎟ (3.4)

Figure 3.1: A real time-domain OFDM signal: The top four figures are modulated

sub-carriers, the fifth figure is the resulting summated sub-carriers, c(t), the sixth

figure is the rectangular windowing function, w(t), and the last image is the Resulting

OFDM symbol oc(t).

 46

Figure 3.2: The Fourier Transform of the rectangular window: The top figure is the

rectangular window. The bottom is the sinc waveform (magnitude spectrum), and the

effect of the rectangular window length on the shape of the sinc waveform.

3.2.2. Frequency-Domain Analysis of OFDM Symbols

The spectrum of the OFDM symbol is obtained by using the Fourier Transform:

j 2 f t
c cO (f) o (t)e dt.

∞
− π

−∞

= ∫ (3.5)

By expressing the OFDM symbol in the frequency spectrum, the role of the sub-

carrier frequency positions and the rectangular window length becomes much clearer.

They are the key variables upon which OFDM orthogonality depends. The Fourier

Transform of the time-domain OFDM symbol transforms the modulated sub-carriers

into phase carrying impulses in the frequency spectrum, while the rectangular window

is transformed into a sinc function. Multiplication of the modulated sub-carriers with

the rectangular window in the time domain results in a convolution of the impulses

with the sinc function in the frequency spectrum. The final result of the convolution is

sinc functions placed at all the positions of the impulses. A sinc waveform is defined

as sin(ft)sinc(ft)
ft
π

=
π

 and shown in Figure 3.2.

 47

The convolution operator is given by the ∗ symbol. The magnitude spectrum of the

OFDM symbol is calculated as

()
C 1

c c w w
c o

| O (f) | | A (f f) A t sinc(f t) | .
−

=

= δ + ∗∑ w

)c+

 (3.6)

The magnitude spectrum of the OFDM symbol can thus be simplified to give

(
C 1

c w w w
c o

| O (f) | | AA t sinc(t (f f) | .
−

=

= ∑ (3.7)

Equation (3.7) can be described as a summation of sinc-waveforms at the original

impulse locations.

Figure 3.3: An OFDM magnitude spectrum. The top figure is the modulated sub-

carrier impulses (time-unlimited), the second figure is the resulting sync-waveform

and the last figure, is (time-limited) OFDM symbol spectrum, showing the

overlapping bandwidths.

 48

A closer look at the sinc function shows that it contains periodic zeroes, which is a

function of the window length and can easily be determined as2

sinc
wsinc w

sinc

m 0; where f ; m [1, 2,...,]
tsinc(f t) .

 1; where f 0

⎧ ⎫= ∈ ∞⎪ ⎪= ⎨ ⎬
⎪ ⎪=⎩ ⎭

 (3.8)

Since all the modulated sub-carriers are windowed using the same rectangular

window, the sinc-waveform for each of them will be exactly the same. By choosing

cf 1 tw= (3.9)

it is possible to shape the sinc functions so that the zero-points from all the sub-

carriers align, to give a spectrum as in Figure 3.3. The sub-carrier impulses are located

at the middle of each sinc-waveform, where the value of the sinc is only one, which

means that the sub-carrier information stays unchanged. The OFDM sub-carriers are

therefore orthogonal to each other at each sub-carrier frequency.

3.3 The Issue of Orthogonality

From Figure 3.3 it seems that the sub-carriers are orthogonal, when choosing the

inter-sub-carrier frequency spacing equal to the reciprocal of the rectangular window

length, but it is important to prove that this is true for all possible values of and cf wt .

To prove that two arbitrary signals are mathematically orthogonal, the integral of the

product of the arbitrary signals needs to be zero:

1 2w (x).w (x)dx 0
∞

−∞

=∫ . (3.10)

2 Appendix A.2: Finding the zeroes of a sinc waveform

 49

We can now replace signal with the sinc waveform and with a train of

equally spaced impulses representing the modulated sub-carriers at the locations of

the zero-points of the sinc waveform.

1w (x) 2w (x)

w
w

msinc(t x) (x)dx ; m [1, 2,...,].
t

∞

−∞

δ − ∈∫ ∞ (3.11)

According to [10] Appendix A, the integral of any continuous arbitrary signal with an

impulse, will result in the arbitrary function being evaluated at the location of the

impulse, so that

0 0(x) (x-x)dx (x) where (x) is the arbitrary function.
∞

−∞

φ δ = φ φ∫ (3.12)

This means that (3.11) will reduce to the sinc values at all the impulse locations, so

that

w w
w w

m msinc(t x) (x)dx = sinc(t) ; m [1, 2,...,].
t t

∞

−∞

δ − ∈ ∞∫ (3.13)

According to the results from Appendix A.2 these impulse locations are now located

over the sinc zeroes for all the integer values of m between one and infinity

w
w

msinc(t x) (x)dx = 0 ; m [1, 2,...,].
t

∞

−∞

δ − ∈ ∞∫ (3.14)

Thus the integral w
w

msinc(t x) (x)dx
t

∞

−∞

δ −∫ is zero for all m [1, 2,...,]∈ ∞ , which means

that all the impulses are orthogonal to the sinc waveform.

This means that OFDM sub-carriers are in fact orthogonal to each other, and that even

though the individual sub-carrier bandwidths overlap with each other, they do not

(under normal circumstances) interfere with each other.

 50

3.4 Conclusions

In this chapter the mathematics behind OFDM symbols were investigated, and

complete mathematical representations of the OFDM symbols created, both in the

time domain and the frequency spectrum. The important issue of orthogonality was

introduced and sub-carrier orthogonality proved. In the next chapter the discrete-time

domain is introduced as well as the reasons why it is used. Methods to convert

continuous-time signals, like the mathematical expression from this chapter into

discrete-time signals are also determined. It will thus be possible to start

implementing OFDM encoders and decoders in a digital environment based on the

mathematics derived in this chapter.

 51

Chapter 4

Encoding and decoding OFDM data

symbols

4.1 Introduction

The encoding and decoding of single OFDM data symbols is a relatively easy process.

Digital data is modulated/mapped onto OFDM sub-carriers in the frequency spectrum

and then converted to the time domain (using the Inverse Fourier Transform) for

transmission over the communications channel. OFDM decoding follows the same

process but just in reverse: the received OFDM symbol is converted to the frequency-

domain using a Fourier Transform, and the sub-carriers are then demodulated to

retrieve the original digital data. The digital implementation of an OFDM encoder and

decoder differs somewhat from the methods described in the mathematical analysis, in

that such an encoder and decoder resides in a digital environment and not in a

continuous-time domain. It is thus important to first study how digital systems receive

and process continuous-time signals, before we start describing the OFDM encoding

and decoding processes.

4.2 Analogue and Digital Domains

Real-life signals or analogue signals are also called continuous-time signals and have

continuous amplitude and time axes, which means that there is infinitely many points

along both axes. Digital systems have only finite memory, and can thus only store

signals in a discrete fashion. Digital systems convert continuous-time domain signals

to discrete digital signals using devices called Analogue-to-Digital Converters (ADC).

ADCs sample the incoming continuous-time signal at a constant rate, called the

sampling frequency (Fs), and convert it to digital values, which the system can

process and demodulate.

 52

The sampling frequency is used to map the continuous-time signal to its discrete-time

signal using the formula

n n
S

nx(n) x(t); t .
F

= = (4.1)

The amount of samples a certain continuous-time domain signal will occupy is

calculated by

()() Signal SN signal time sampling rate t F .= = (4.2)

To convert discrete-time domain signals back to the continuous-time again we use

devices called Digital-to-Analogue Converters (DAC) and lowpass (reconstruction)

filters.

Figure 4.1: The conversion of a continuous-time signal to a discrete-time signal. The

top figure is a continuous-time sinusoidal signal, showing the sampling instants. The

bottom figure is the equivalent discrete-time signal of the sinusoid.

 53

The discrete-time domain acts very much like the continuous-time domain, which is

good, because it means that all the Fourier transform pairs can be modified to work

for both these domains. There are a few major differences of which one needs to be

aware though. One very important difference between the continuous-time and

discrete-time domain is that signal frequencies are always written relative to the

sampling frequency, using the relationship

c

S

f k .
F N

= (4.3)

In the continuous-time domain, is the signal frequency and the sampling

frequency. In the discrete-time domain, N is the amount of samples in the signal and

Cf SF

k
N

 is the normalised discrete-time frequency of that signal. Another more obvious

difference between the continuous-time domain and the discrete-time domain is that

signals in the continuous-time use the “time” parameter, t, to describe signals, where

discrete-time signals use the “sample” parameter, n, to describe signals. As an

example, the continuous-time signal

C Cs(t, f) A cos(2 f t r(t)),= π + (4.4)

becomes the discrete-time signal

ks(n, k) A cos(2 n r(n)).
N

= π + (4.5)

One other difference between the continuous-time domain and the discrete-time

domain is that an integral in the continuous-time domain becomes a summation in the

discrete-time domain. For instance the Fourier Transform in the continuous-time

domain:

j 2 f tX(f) x(t)e dt,
∞

− π

−∞

= ∫ (4.6)

 54

becomes a Discrete Fourier Transform in the discrete-time domain

kN 1 j 2 n
N

n 0
X(k) x(n)e ; (0<k<N).

− − π

=

=∑ (4.7)

It is thus possible to implement an OFDM encoder and decoder in a digital

environment, still based on the original OFDM mathematics, by using the

relationships between the continuous-time and the discrete-time domain as shown.

4.3 Encoding OFDM Symbols

Encoding OFDM symbols refers to the process of mapping and modulating digital

data bits into an OFDM symbol. For this thesis all OFDM sub-carriers will be

modulated using QPSK modulation. Some of the parameters of the encoding process

must be calculated beforehand.

The amount of samples needed to store an OFDM symbol is calculated as

()()OFDM W SN rectangular window time sampling rate t F .= = (4.8)

The amount of QPSK sub-carriers within a single OFDM modulated symbol is

and the digital bit capacity of a single QPSK modulated symbol is . The digital

bit capacity of a single OFDM modulated symbol can be calculated as:

SDN

QPSKC

OFDM QPSK_1 QPSK_2 QPSK_3 QPSK_NsdC =C C C ... C ,+ + + + (4.9)

which then becomes

()()OFDM QPSK SDC = C N . (4.10)

The digital data bits for encoding is . IN OFDMB [1...C]

 55

4.3.1 Encoding Single OFDM Symbols

As already mentioned, the process of encoding OFDM symbols is done in the

frequency domain. OFDM symbols with large amounts of sub-carriers could

theoretically modulate each sub-carrier separately and add the results from each

modulator together, to create an OFDM symbol, but there is an easier way. In the

frequency domain, digital data bits are mapped to magnitudes and phase values, and

placed at the correct positions in the frequency spectrum. Taking the IDFT of the

frequency spectrum will produce the time domain signal. This time domain signal is

then equivalent to encoding each sub-carrier separately, but it is much faster and

easier. Figure 4.2 illustrates the process of encoding a single OFDM symbol.

Figure 4.2: A graphical example of the single OFDM symbol encoding process.

 56

Table 4.1 explains the OFDM symbol encoding process.

Nr OFDM symbol encoding process

*1 First the serial stream of input digital data bits are converted to a parallel

stream, so that they can all be processed together.

*2 Secondly the digital data bits are mapped to Amplitude and Phase values and

placed at the correct locations in the frequency spectrum (The Modulation

Process)

*3 Thirdly the IDFT converts the frequency spectrum to a complex time domain

signal, which can be transmitted.

*4 Fourthly the parallel complex time domain signal is reconverted back to a

serial stream.

*5a,

*5b

Finally the real part of the complex time domain signal becomes the In-

Phase Signal a.k.a. the I-channel signal, and the imaginary part becomes the

Quadrature-Phase Signal a.k.a. the Q-channel signal

Output The final I- & Q-channel signals are then really to be transmitted over the

communications channel.

Table 4.1: The OFDM symbol encoding process

4.3.2 Encoding Multiple OFDM Symbols

OFDM symbols have the ability to encode many digital data bits, but the capacity of

an OFDM symbol is still finite. The digital data capacity of each OFDM symbol is

limited to the amount of sub-carriers within each symbol, as well as the amount of

digital data bits encoded within each sub-carrier. In a practical system, one would

often want to transfer large amount of data across the communications channel. If the

amount of digital data bits is more than the capacity of a single OFDM symbol, the

digital data is simply encoded across many OFDM symbols and transmitted over the

channel. This is called an OFDM symbol train and can also be referred to as the

OFDM data packet or the OFDM frame.

 57

Such an OFDM symbol train can be seen as a series of sample-shifted OFDM

symbols, expressed as

TRAIN 0 1 OFDM 2 OFDM T 1 OFDMO (n) o (n) o (n N) o (n 2N) ... O (n (T 1)N)−= + − + − + + − −

which becomes
T 1

TRAIN k OFDM
k 0

O (n) o (n kN
−

=

= −∑). (4.11)

Figure 4.3 illustrates the multiple OFDM symbol encoding process.

Figure 4.3: A graphical example of the multiple OFDM symbol encoding process.

OFDM symbol trains can theoretically encode unlimited amount of data bits into

unlimited OFDM symbols, and transmit it across the communications channel.

 58

4.4 Decoding OFDM Symbols

Decoding OFDM symbols refers to the process of de-mapping and demodulating the

digital data bits from OFDM symbols.

4.4.1 Decoding Single OFDM Symbols

As with the encoding of single OFDM symbols, the decoding of single OFDM

symbols is also done in the frequency domain, simply because it is easier and more

convenient to do so. The complex time-domain signal is converted to the frequency

spectrum using a DFT. Afterwards the phases and amplitudes of the sub-carriers at the

different frequency locations are demodulated and de-mapped to digital data bits. The

data bits are the result of the decoding process. Figure 4.4 illustrates the process of

decoding a single OFDM symbol.

Figure 4.4: A graphical example of a single OFDM symbol decoding process.

 59

Table 4.2 explains the OFDM symbol decoding process.

Nr OFDM symbol encoding process

*1a,

*1b

Firstly the In-Phase and Quadrature-Phase signals are converted to a parallel

stream so that they can be processed together.

*2 Secondly the received complex time domain signal is converted to the

frequency spectrum using a DFT

*3 Thirdly the Amplitude and Phases of the sub-carriers at different frequencies

are mapped and demodulated to digital data bits (The Demodulation Process)

*4 Finally the digital data bits are converted to a serial output bit stream.

Out-

put

The serial output bit stream is the result of the OFDM symbol decoding

process, and can be passed to an upper layer application.

Table 4.2: The OFDM symbol decoding process

4.4.2 Decoding Multiple OFDM Symbols

Receiving and decoding OFDM symbol trains is the most complicated part of an

OFDM communications system. OFDM symbols exists as separate entities. Each

OFDM symbol contains information about the bits it encoded only, and has no

information about any adjacent OFDM symbols. An OFDM decoder thus needs to be

synchronised to each received OFDM symbol. An unsynchronised OFDM decoder

runs the risk of decoding only part of an OFDM symbol together with part of an

adjacent OFDM symbol. This is called inter symbol interference and results in severe

degradation in data quality. In order to create an efficient OFDM symbol train

decoder, the issue of synchronisation together with other performance influencing

issues needs to be addressed first. It is a major part of this thesis, of which a whole

chapter is set aside to discuss and study it. Please refer to Chapter 5 for more details.

 60

Figure 4.5 illustrates the multiple OFDM symbol decoding process.

Figure 4.5: An OFDM decoder incorrectly decodes an OFDM symbol due to lack of

OFDM symbol synchronisation.

An OFDM symbol train decoder needs to be synchronised with the received OFDM

symbol, in order to successfully decode OFDM symbols.

4.5 Conclusions

In this chapter we first discussed the differences between the continuous-time domain

in which real-life analogue signals exists and the discrete-time domain in which

digital systems process data. The conversion between the two is done using a digital-

to-analogue converter and an analogue-to-digital converter. Single OFDM symbol

encoding and decoding was also studied, as well as encoding OFDM symbol trains.

OFDM symbols are very sensitive to outside disturbances like noise, synchronisation

and sampling frequency drift. These issues are discussed in the following chapter and

needs to be overcome before we can design a successful OFDM symbol train decoder.

 61

Chapter 5

Identifying and Overcoming OFDM System

Performance Influences

5.1 Introduction

The previous chapter showed us how to implement an OFDM encoder and how great

amounts of data can be encoded across various OFDM symbols and transmitted over

the communications channel. The process of decoding single OFDM symbols was

also studied up to the point of decoding OFDM symbol trains. Decoding OFDM

symbol trains is, to say the least, a very complicated matter. OFDM symbol trains are

very finicky to disturbances and outside influences. This makes OFDM decoders very

complicated and processor intensive, relative to normal single-carrier digital

demodulators. Thus before describing the workings of a complete OFDM decoder, it

is necessary to identify the factors which influence the performance of OFDM

decoders. Only after identifying these real-life factors can we create means of

overcoming them, and design an efficient OFDM decoder.

5.2 System Performance Influences

Identifying the main OFDM system performance influences caused by real-life factors

and implementations is the first step in designing an efficient OFDM decoder. Here

we discuss the six most important issues.

5.2.1 Noise

As already mentioned, noise is unwanted random interference that degrades the

quality of signals. In Chapter 2 we analysed the influence of additive white Gaussian

noise on QPSK modulated signals and derived expressions for determining symbol

error rates (SER) and bit error rates (BER) of such systems.

 62

We also know, from Chapter 3, that OFDM modulation, in its most basic form, is just

a number of summed digitally modulated signals, all windowed using the same

rectangular window. We can then ask the question: Can the expressions derived for

single-carrier digitally modulated signals be adapted to work for OFDM modulation?

The answer is YES, because OFDM sub-carriers are orthogonal to each other.

Orthogonality ensures that OFDM sub-carriers remain independent of each other in all

ways. This means that the effects of noise on OFDM modulated signals will be a

direct result from the influence the noise has on the individual OFDM sub-carriers.

The influence of noise on OFDM modulated signals can be determined as follows.

The digital bit capacity of a single QPSK modulated symbol is . QPSKC

The BER of a single QPSK modulated symbol is . QPSKBER

The theoretical amount of error bits per QPSK symbol is ()()QPSK QPSK QPSKE = C BER .

The amount of QPSK sub-carriers within a single OFDM modulated symbol is SDN .

The digital bit capacity of a single OFDM modulated symbol is

()()OFDM QPSK SDC = C N . (5.1)

The theoretical amount of error bits per - amount of QPSK symbols, is also the

theoretical amount of error bits per single OFDM symbol

SDN

()() ()() ()()OFDM QPSK_1 QPSK_1 QPSK_2 QPSK_2 QPSK_Nsd QPSK_NsdE = C BER C BER ... C BER+ + +

which then becomes

()()()OFDM QPSK QPSK SDE = C BER N . (5.2)

 63

The BER of a single OFDM symbol can finally be calculated as the theoretical

amount of error bits per OFDM symbol, divided by the total amount of digital data

bits in a single OFDM symbol

OFDM
OFDM

OFDM

EBER =
C

 , (5.3)

which is

()()()
()()

QPSK QPSK SD
OFDM

QPSK SD

C BER N
BER =

C N

and finally becomes

OFDM QPSKBER =BER . (5.4)

This means that the bit error rate of a single OFDM modulated symbol is equal to the

bit error rate of any of the OFDM sub-carriers within the OFDM symbol, if all the

sub-carriers use the same digital modulation. Since we have already deduced formulas

to determine QPSK BER for different SNR values, those same graphs can be used as

reference when testing the performance of our OFDM decoder later.

Overcoming noise is not an easy task. All communication systems should strive to

have an SNR that is as high as possible. This reduces the possibility of bit errors but

would never guarantee completely error free transfers. In many radio communication

devices, the SNR depends on many things, including the distance between the

receiver and transmitter and the temperature of the radio circuitry components [11]. It

is thus not always possible to maintain an exceptionally high SNR. Instead of trying

to correct the source of the problem, it is sometimes better to see how one can correct

the result of the problem, in this case a poor BER. In order to boost data link quality,

systems use a technique called Forward Error Correction (FEC).

 64

In short, FEC techniques can automatically correct faulty digital bits by adding extra

FEC bits into the digital data stream. This increases transmission quality at the cost of

reduced transmission speed. FEC is a large and complicated area of research, which

will not be looked at for the purpose of this thesis. For more information about FEC

techniques, please refer to [1,13,14].

5.2.2 OFDM Symbol Synchronisation Issues

The most important step in successfully decoding an OFDM symbol train is the

synchronisation of the OFDM decoder to the individual OFDM symbols within the

OFDM symbol train. This is called OFDM symbol synchronisation. Successful

synchronisation of an OFDM symbol train is achieved in two steps, the initial OFDM

symbol train synchronisation [15] and the continuous re-synchronising of the OFDM

data symbols [16,17].

5.2.2.1 Initial OFDM Symbol Synchronisation

In order for an OFDM decoder to successfully decode an incoming OFDM symbol

train, the OFDM decoder needs to be exactly synchronised with the OFDM symbols.

An unsynchronised OFDM decoder runs the high risk of decoding information across

two adjacent OFDM symbols, which would result in inter symbol interference and

degradation in data quality. Final tests done on the OFDM decoder has confirmed that

synchronisation is the one factor that effects the results of the decoder much more

than any other factor, including noise.

To overcome the issue of initial symbol synchronisation we introduce a new special

OFDM symbol called the OFDM preamble symbol. The OFDM preamble symbol

does not carry any encoded data and is purely used for synchronisation purposes. The

OFDM transmitter transmits a short OFDM preamble train before the actual OFDM

data train. The OFDM decoder knows the nature and exact structure of these OFDM

preamble symbols and monitors the communication channel for the occurrence of

these symbols. The OFDM decoder cross-correlates the received data with a local

version of the OFDM preamble symbol. Cross-correlation can be described as a

 65

measure of the similarity between two different data sets, computed by the sum of the

cross products between the two datasets at different lags. When the OFDM preamble

symbol train finally reaches the receiver, the cross-correlation will produce peak

values, showing that there is a high similarity between the received signal and the

local OFDM preamble symbol as shown in Figure 5.1.

Figure 5.1: A graphical example of an OFDM decoder with initial OFDM symbol

synchronisation.

The result of the OFDM preamble train cross-correlated with the local OFDM

preamble symbol, is a signal with periodic spikes showing the location of each of the

OFDM preamble symbols in the transmission. By examining these peaks in the cross-

correlation result, it is possible to exactly determine the start location and boundary of

each OFDM preamble symbol, as well as the start location of the following OFDM

data symbol train. The OFDM decoder will thus be able to synchronise to the OFDM

symbols. A decoder’s local OFDM preamble symbol is given by . r_LOCALP (n)

 66

The OFDM preamble symbol is samples in length. The amount of OFDM

preamble symbols in an OFDM preamble train is . An OFDM preamble symbol

train can then be expressed as

PN

NP

NP 1

Train r P
k 0

P (n) P (n kN)
−

=

= −∑ .

.

 (5.5)

The cross-correlation between the OFDM preamble symbol and a received signal is

 Pr,Rx x r _ LOCAL
n

r (k) R (n) P (n k)
∞

=−∞

= −∑ (5.6)

If the OFDM decoder then receives an OFDM preamble symbol train

Pn 1

x Train r
s 0

R (n) P (n) P (n sN),
−

=

= = −∑ P

,−

.−

 (5.7)

the cross-correlation between a local receiver’s OFDM preamble symbol and a

received OFDM preamble train thus becomes

Pn 1

Pr,Rx r _ LOCAL r P
n s 0

r (k) P (n k) P (n sN)
∞ −

=−∞ =

= −∑ ∑ (5.8)

which can be rewritten as

Pn 1

Pr,Rx r _ LOCAL r P
n s 0

r (k) P (n k) P (n sN)
∞ −

=−∞ =

= −∑ ∑ (5.9)

Since cross-correlation measures the similarity between two datasets, the strongest

correlation will occur whenever the decoder’s OFDM preamble symbol is aligned

with each of the received OFDM preamble symbols within the OFDM preamble train.

 67

From Equation (5.9) we can see that that this happens when the position of the

decoders’ local OFDM preamble is equal to the location of the received OFDM

preambles so that

Pk sN ; 0 s P 1.n= ≤ ≤ − (5.10)

This means that the peaks will occur at position of a received OFDM preamble

symbol as given by (5.10). For a perfect channel, r_LOCAL rP (n) P (n)= . The following

figure shows the cross-correlation peaks located at the rear of each received OFDM

preamble symbol.

Figure 5.2: A graphical example of initial OFDM symbol synchronisation results

using cross-correlation.

By detecting the periodicity of the peaks produced by the cross-correlation of a

receivers’ local OFDM preamble symbol and the received OFDM preamble train, it is

possible to determine the position of each OFDM preamble symbol and thus calculate

the start location of the following OFDM data symbols, and synchronise on it.

 68

5.2.2.2 Continuous re-synchronisation of OFDM data symbols

Communications systems use oscillators to generate clock signals for timings that

control the systems’ sampling frequency. Impurities in the physical makeup of the

oscillators results in sampling frequency drift. These impurities are measured in “parts

per million” or PPM. As example, a system running at 20kHz, with a oscillator which

has a 50 PPM rating, could in actual fact be anything between

20 000Hz *(1 50PPM) 19 999Hz− =

and

20 000Hz *(1 50PPM) 20 001Hz.+ =

This means that a system which expects 20 000 samples per second, could in actual

fact be out with at least 1 sample after 1 second. This is called sampling frequency

drift. The OFDM symbols are usually only a few samples in length and the effects of

the sampling frequency drift aren’t easily observable. This is because the effects are

sub-sample in size, which means that an OFDM symbol will become de-synchronised

in parts that is smaller that one actual sample. Although this is a very small value, to a

system such as an OFDM decoder, which depends on absolute synchronisation, it

could severely influence the quality of data. In the long run the effects would become

worse and worse and finally result in a completely de-synchronised OFDM decoder.

The difference in sampling frequency can be expressed as

S SF (decoder) F (transmitter) F .S= + Δ

Except for the long-term de-synchronisation effect of the sampling frequency drift,

the sub-sample shifts in OFDM symbols also causes degradation in data quality due to

the following Fourier transform pair

O
kj2 nFFT N

Oo(n n) O(n)e .
− π

− ⎯⎯⎯→ (5.11)

 69

The Fourier transform above states that any signal which is delayed by a value , be

it sub-sample or super-sample in size, directly influences the phases of all the

frequency components inside that signal. The phase influence becomes worse as the

frequencies increase. For systems such as the OFDM encoders that encode the digital

data into sub-carrier phases, this is a major problem. See Figure 5.3.

On

The effects of the sampling frequency drift are overcome by using reference carriers,

also called virtual carriers. Reference carriers are placed at different frequency

positions throughout the OFDM symbol, and they all carry constant phases

throughout the whole OFDM symbol train transmission. The OFDM decoder knows

the positions and nature of these reference carriers.

In order for an OFDM decoder to compensate for the effects of possible sampling

frequency drift, the OFDM decoder, upon receiving an OFDM symbol for decoding,

first decodes the reference carriers.

Figure 5.3: OFDM symbol de-synchronisation due to sampling frequency drift.

 70

The OFDM decoder knows the expected reference carrier phases and frequency

positions. The receiver can thus compare the received reference phases with the

expected reference phases. If there is a difference, the receiver will immediately know

that some sort of sample delay has occurred.

The expected reference carrier with digital frequency k and phase kφ can be expressed

as

kO(n,k) O(n,k) .= ∠φ (5.12)

The influence of a sample delay from (5.11) is

O
kj2 n
N

O
ke 1 (2
N

− π
= ∠ π n). (5.13)

The received reference carrier with a sample delay becomes

()O
kj2 n
N

k
kO(n,k)e O(n,k) 1 (2 n)
N

− π ⎛= ∠φ ∠ π⎜
⎝ ⎠

O
⎞
⎟ (5.14)

which gives

O
kj2 n
N

k
kO(n,k)e O(n,k) 2 n .
N

− π ⎛= ∠ φ + π⎜
⎝ ⎠

O
⎞
⎟ (5.15)

The phase difference between the expected and received reference carrier is thus

O
k2 n
N

φ = π� . (5.16)

 71

Since the index value, k, the symbol size, N, and the reference carrier phase difference

is known, after some precise phase unwrapping, the sample offset can be calculated as

O
Nn
2 k

.φ⎛= ⎜ π⎝ ⎠
� ⎞
⎟ (5.17)

After the sample offset has been calculated, (5.13) can be used to calculate the phase

offset at all the data carriers. The phase offsets can then be subtracted from all the data

carriers, to retrieve the original phase values. This is called reference carrier phase

compensation.

It is very important to note that the reference carriers too, can be influenced by system

noise. A noisy and incorrect reference can cause the decoder to incorrectly calculate

the sample offset and incorrectly compensate all the data sub-carrier phases in the

symbol. It is suggested that in practice more than one reference carrier is used and a

mean or weighted decision from all the reference carriers be used when determining

the sample offset.

If one can assume that the system oscillator characteristics do not change drastically

between OFDM symbols, it is further possible to keep a record of sample offsets

between OFDM symbols. The result would be a steady increase or decrease in the

sample offset (which, if left unattended, would result in decoder de-synchronisation),

which could be used to determine the rate of change in sample offset. Future expected

sample offsets could be calculated and used to test against suspicious sample offset

outliers.

When the sub-sample offset has reached the point where it is the size of an actual

sample, the decoder can just skip or delay one sample to get the decoder precisely

synchronised again.

 72

5.2.3 Multipath Effects on OFDM symbols

Multipath delay is a phenomenon which occurs when signals are transmitted and

received using electromagnetic waves [5,18,26]. The quickest way for a transmitted

signal to travel between a transmitter and a receiver is in a straight line, but non-

directional antennae transmit signals in different directions. Sometimes it happens that

transmitted signals reflect off objects and still reach the receiver. Due to the longer

distance these signals travel, they reach the receiver later than a direct line-of-sight

signal, and with a smaller amplitude. These multipath signals (also known as delay

spread) cause delayed versions (a time-domain smearing effect) of the original signal

to occur at the receiver. Such an arbitrary transmitted signal can be expressed as

Tx(t) As(t).= (5.18)

The multipath received signal can then be expressed as a number of summed delayed

versions of the original signal, with different amplitudes

1 1 E1 1Rx(t) Bs(t T) Cs(t (T T)) Ds(t (T T)).= − + − + + − + E2 (5.19)

As we have already stated, OFDM symbols exist as separate entities of limited length.

A delayed OFDM symbol will thus overflow the original OFDM symbol boundaries

into the following OFDM symbol and cause inter-symbol interference.

The effects of multipath delay are overcome by cyclically extending the OFDM

symbol, by copying the rear part of the OFDM symbol and pasting it to the front of

the symbol. The front of the new extended OFDM symbol can thus absorb the delayed

copies from the previous symbol and still keep the original OFDM symbol data

unaltered. This is called the Cyclic Prefix or Guard Interval of the symbol.

 73

Figure 5.4: Multipath effects causes delayed signals to reach the receiver.

Choosing the length of the guard interval is an interesting subject. The guard interval

should be long enough to absorb all the major delay spread. Making the guard interval

too long, on the other hand, wastes precious transmission time. It finally comes down

to the typical environment the system is going to be used in, and the types of

multipath signals the system has to deal with. Multipath fading is a large and

complicated area of study. OFDM sub-carriers have long symbol periods and small

bandwidths, which are assumed to be flat fading channels. This removes the need for

any complicated channel equalisations. In the case of OFDM, guard intervals are

sufficient countermeasure for delay spread. The guard interval for an IEEE 802.11a

based system is 800 ns, according to the specifications [1]. Figure 5.5 illustrates the

effects of delay spread on OFDM symbols and how guard intervals are used to

combat it.

 74

Figure 5.5: The effects of delay spread and use of guard intervals

5.2.4 Peak-to-Average Power Ratio

The Peak-to-Average Power Ratio (PAPR) is a way of measuring the ratio between

the peak power of a signal and its average power [5,19,20]. For OFDM modulated

signals, where the signal basically consists of a number (NST) of summed sub-carriers,

it is possible for parts of the signal to add constructively and produce peaks that is NST

times larger than the average signal level. For instance, if n IEEE 802.11a based

system has a total of NST=52 sub-carriers, the PAPR of the OFDM signal can be

calculated as

 75

()dB 10 STPAPR 10log N ,= (5.20)

which gives

()dB 10PAPR 10log 52 17.16dB.= = (5.21)

A large PAPR is a disadvantage to a system, and has a major influence on the

dynamic range of the system as well as the transmitter amplifier.

5.2.4.1 OFDM Dynamic Range Issues

As explained in Chapter 4, digital systems store data in a discrete fashion. Digital data

bits are used to represent digital values and the more bits are used, the bigger the

value it can store. Continuous-time signals have amplitudes that get mapped to digital

amplitude values. The ADCs quantise the analogue values to the nearest digital data

value it can represent. The more bits used to store these digital amplitude values, the

finer the resolution of the amplitudes, and thus a more detailed signal. Popular

quantising levels are 8, 12 and 16 bits, but can go as high as 24 and 32 bits. Signals

with high PAPR values, like OFDM signals, have high peaks that are located

relatively far from the majority of signal activity. Since the whole signal needs to be

mapped to digital values, many of the available bits are “wasted” because they’re only

there to fill the range between the peak and the major signal activity. It is thus

possible for signals with very high PAPR values to start losing signal resolution,

which in terms leads to quantising noise, and a degradation of the data quality.

5.2.4.2 Transmitter Amplifier Issues

A high PAPR becomes an issue when one attempts to transmit the OFDM signals

over the air using electromagnetic waves. The analogue front-end utilises a power

amplifier that amplifies the OFDM signal to required levels before transmitting it

using an antenna. A power amplifier is not inherently linear, but it is made linear by

utilising linear areas of operation within the amplifier. The power amplifier must thus

 76

provide gain for every peak level within the signal without warping the signal because

of these non-linear regions. Warping of the OFDM signals will negatively effect the

quality of the signal and the resulting bit error rate. A high PAPR will result in the

power amplifier providing less power to the signals between the peaks. The DC

power consumption of power amplifiers is determined by their peak power, which

means that OFDM power amplifiers could also be dramatically inefficient.

Minimising the PAPR allows a higher average power to be transmitted for a fixed

peak power, improving the overall signal-to-noise ratio at the receiver.

Overcoming the effects of a high PAPR is not a very straightforward task. Some

methods include the use of peak reduction carriers [21] where additional OFDM sub-

carriers are added to the OFDM symbol, specially encoded to reduce peaks in the

OFDM symbol. Another method of reducing PAPR is by clipping [22] the OFDM

symbol at certain levels and then counteracting the clipping effects by the use of

special filters.

5.2.5 Communications Channel Estimation

Channel estimation is the process where the influence of the communication channel

on the transmission signal is estimated, in order to predict the received signal, or to

counteract its effects [23]. A communication channel, be it a copper wire or radio

waves, will sometimes differently attenuate different frequencies in the transmission

signal. Such attenuation can be a result of the physical characteristics of the

communications channel as well as many other things. The channel transfer function

is a transform, which can be used to describe the output of a system as a function of

the input. Digital demodulators such as ASK and QAM demodulators which decode

digital data as a function of the magnitude of the received signal at certain

frequencies, run the risk of incorrectly decoding the data if it happens that the channel

is attenuated at the decoding frequencies. The channel transfer function can be

expressed in terms of the Laplace transform, which basically operates in the frequency

domain.

 77

The transmitted signal is transformed into the received signal by means of

the transfer function , by

X(s) Y(s)

H(s)

Y(s) H(s)X(s).= (5.22)

The transfer function can be expressed as

YH(s) (s).
X

= (5.23)

One way to counteract the effects of the channel transfer function is for the receiver to

transform the received signal by the inverse channel transfer function . The

inverse channel transfer function can be calculated as

1H (s)−

1 XH (s) (s).
Y

− = (5.24)

The received signal can then be transformed using the inverse channel transfer

function, to produce a new output

1

2Y (s) Y(s)H (s),−= (5.25)

which then becomes the original input signal

1
2

Y XY (s) H(s)X(s)H (s) (s)X(s) (s) X(s).
X Y

−= = = (5.26)

In order for the receiver to counteract the effect of the channel transfer function the

receiver needs to know what the original input signal was. A perfect candidate for

channel estimation is the OFDM preamble symbol.

 78

During the initial symbol synchronisation process, the Laplace Transform or Fourier

transform can convert the local preamble symbol and the received

preamble symbol, (after successful synchronisation) to their respective spectra.

The inverse channel transfer function will then be

r _ LOCALP (n)

rP (n)

r _ LOCAL1

r

P (s
H (s) .

P (s)
− =

)
 (5.27)

Any signal received thereafter can then be transformed using the inverse channel

transfer function, but it should be noted that it is possible for the characteristics of the

channel to change in the long term, and thus the channel transfer function will change

as well. It is thus suggested that the transfer function be updated on a regular basis

during long periods of communications.

The time-domain representation of the channel transfer function is called the channel

impulse response , and can be defined as the response of a system to an impulse

as input signal. The impulse response of a communications channel is basically

responsible for limiting instantaneous change in signals. This has an effect on OFDM

encoded signals, since every following OFDM data symbol is a new signal. The result

is a distortion of the front part of each new OFDM symbol and the digital data it

carries.

h(n)

One method of overcoming this distortion is by cyclically extending the OFDM data

symbol in the front. The cyclic extension keeps the OFDM symbol periodic, and if the

cyclic prefix is longer than the impulse response it will keep the original OFDM

symbol unaltered. The cyclic prefix has already been introduced in combating

multipath effects, and is now further crucial in combating the effects of

communication channel impulse response.

 79

5.2.6 System Performance Influences Conclusions

The six most serious system performance influences have been determined as

• Additive white Gaussian noise.

• Initial OFDM symbol synchronisation at the receiver.

• Continuous OFDM symbol re-synchronisation due to system oscillator

impurities.

• Multi-path fading effects on OFDM symbols.

• PAPR issues with high sub-carrier count OFDM systems.

• Communication channel estimation and compensation.

After extensively examining each of these performance influencing factors, and

determining means to overcome them, it is now possible to design a effective OFDM

receiver system.

5.3 Advanced System Performance Improvements

There exist a few additional, and more complex techniques, which can improve

OFDM system performances. These advanced improvements are more specialised in

nature and their performance improvements not always guaranteed.

5.3.1 Data Interleaving

Data interleaving is the process where by the digital data bits are encoded to random

OFDM sub-carriers[1,3,6,12]. Continuous narrow-band interference of the OFDM

signal by external devices, cause bursts of errors in the decoded data stream.

Unfortunately forward error correction schemes are not so effective in correcting

bursts of errors. By placing the encoded data bits at random OFDM sub-carriers,

bursts of erroneous data bits become more random in nature, and thus improve the

correcting ability of the forward error correction scheme.

 80

5.3.2 Sub-carrier Adaptive Bit Loading

Adaptive bit loading is a technique where each OFDM sub-carrier modulation scheme

is determined by the quality of that OFDM sub-carrier [12,24]. OFDM sub-carriers

with high SNR can be given more power and higher-order modulation techniques.

Lower-order modulation techniques are assigned to OFDM sub-carriers with poor

SNR. Sub-carriers with very bad SNR can even be turned off. Adaptive bit and power

loading can improve system efficiency and optimise data performance of the system.

5.3.3 Spatial Multiplexing Techniques

Spatial multiplexing [25], also known as MIMO or Multiple-In Multiple-Out

techniques, attempts to increase transmission signal strength by increasing the amount

of antennae at the transmitter and receiver. Multipath fading at two different antennae

could be uncorrelated over the two different transmission paths. Combining these

received signals will result in a SNR higher than the SNR in any of the individual

signals. Higher SNR will result in better data quality and lower BER.

5.4 Conclusions

In this chapter we have introduced and studied the six primary OFDM system

performance influences. Methods for overcoming them have also been discussed in

detail. Any OFDM receiver will need to implement them in order to operate at

reasonable performance levels. There exist some further advanced methods for

improving system performance. These methods do not guarantee improvements and

can come at the price of increased processing power or extra hardware. In the next

chapter we study the IEEE 802.11a standard of OFDM encoding. The IEEE 802.11a

standard is very robust, and incorporates many of the methods described in this

chapter for overcoming the OFDM system performance influences. The SDR

implementation of the OFDM transceiver system is also based on the IEEE 802.11a

standards.

 81

Chapter 6

IEEE 802.11a OFDM standard

6.1 Introduction

The Institute of Electrical and Electronic Engineers, also known as the IEEE, is a non-

profit, technical professional association with hundreds of thousands of members from

approximately 175 countries. Through its members, the IEEE is a world leading

authority in many technical areas, including telecommunications. The IEEE has over

37 societies that specialise in different technologies and creates standardised rules

based on these existing and new technologies. The standardisation of technologies

give different companies the chance to produce compatible products that results in

competitive markets for their products. The IEEE 802.11 standard is an evolving

family of specifications for the wireless transmission of local area networks. The

IEEE 802.11a standard is an enhancement of the IEEE 802.11 standard and is tailored

for use in high-speed access hubs operating in the frequency range 5.725 GHz to

5.850 GHz [1].

6.2 The IEEE 802.11a Standard

The IEEE 802.11a standard incorporates OFDM modulation to encode digital data

bits onto 64 sub-carriers spanning across 20 MHz of bandwidth to provide

transmission of data at rates of 6, 9, 12, 18, 24, 36, 48, or 54 Mbps. The standard

incorporates methods for overcoming virtually all the real-life performance influences

we have discussed in previous chapters, and the result is a robust system based on

OFDM modulation for the wireless transmission of computer network data.

6.2.1 The IEEE 802.11a Standard Overview

Some of the features that the IEEE 802.11a standard incorporates:

• Short and Long preamble symbols for initial symbol synchronisation.

 82

• Cyclic extended data symbols to combat multipath fading effects.

• Reference carriers within each data symbol for continuous re-synchronisation.

• Convolutional encoding forward error correction to combat noise effects.

• Bit interleaving for added error correction efficiency.

Four different IEEE 802.11a symbol types exist:

• Short Preamble Symbols

• Long Preamble Symbols

• OFDM Signal Symbol

• OFDM Data Symbol

The IEEE 802.11a data symbol specifications are:

• 48 sub-carriers used for encoding data.

• Sub-carrier encoding options: BPSK, QPSK, 16-QAM and 64-QAM.

• 4 sub-carriers used as reference carriers.

The IEEE 802.11a packet is made up of 10 short preambles followed by 2 cyclically

extended long preambles, a signal symbol and then a maximum of 4096 data symbols,

as shown in Figure 6.1.

Figure 6.1: An IEEE 802.11a standard packet format

 83

The IEEE 802.11a OFDM symbols use a total of 20MHz bandwidth, which is divided

into 64 subcarriers spaced 312.5 kHz apart. Only the first 52 sub-carriers are used, of

which 48 are used for data and the 4 as reference carriers. Refer to Table 6.1 for detail

timing parameters of the IEEE 802.11a system [1].

Parameter Value

BBW: OFDM symbol bandwidth 20 MHz

NOFDM: Total amount of OFDM sub-carriers 64

ΔF: Sub-carrier frequency spacing 0.3125 MHz (20MHz/64)

NST: Number of Used sub-carriers 52 (NSD + NSP)

NSD: Number of Data Sub-carriers 48

NSP: Number of Pilot (Reference) Sub-carriers 4

TFFT: IFFT/FFT Period 3.2 us (1 / ΔF)

TGI: GI (Cyclic Prefix) Duration 0.8 us (TFFT /4)

TSYM: Complete Symbol Timing (FFT+CP) 4.0 us (TFFT + TGI)

TGI2: Cyclic prefix for Long Preambles 1.6 us (TFFT /2)

TLONG: Long Preamble Sequence 8.0 us (2xTFFT + TGI2)

TSHORT: Short Preamble Sequence 8.0 us (10xTFFT /4)

Table 6.1: IEEE 802.11a timing parameters.

The IEEE 802.11a transmission time can thus be calculated as

()()802.11 LONG SHORT SYM SYMT T T T (signal) number of OFDM packets T= + + + (6.1)

which is

()()802.11T 20us number of OFDM packets 4us .= + (6.2)

It is further possible to calculate the “over-the-air” data rate of an IEEE 802.11a

system by choosing different sub-carrier modulation schemes as well as different

convolutional coding rates. Refer to Table 6.2 for the data rate dependent parameters.

 84

Data rate

Megabits/s

Sub-carrier

Modulation

Coding rate

Convolution

Total Bits /

sub-carrier

Total Bits /

symbol

Data Bits

/symbol

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 16-QAM 1/2 4 192 96

36 16-QAM 3/4 4 192 144

48 64-QAM 2/3 6 288 192

54 64-QAM 3/4 6 288 216

Table 6.2: Data rate dependent parameters of an IEEE 802.11a system

A 64-point IFFT or IDFT function converts the spectrum into complex time domain-

signals. The complex frequency-domain coefficients used to describe the different

OFDM time signals have indices that range from –26 to 26. These indices map onto

the IDFT block as shown in the Figure 6.2.

Figure 6.2: An IEEE 802.11a IDFT/IFFT function block

 85

At a sampling rate of 20 MSPS an IEEE 802.11a IDFT function block will produce

complex time domain signals of exactly 3.2 us duration. This is referred to as FFTT .

6.2.2 The IEEE 802.11a Short Preamble Symbol

The IEEE 802.11a short preamble symbol train make up the first half of the PLCP

preamble, and is exactly 8 microseconds in duration. Each short preamble symbol can

be described using the series of complex DFT coefficients

()26,26s 13 6 {0,0,1 j,0,0,0, 1 j,0,0,0,1 j,0,0,0, 1 j,0,0,0,...− = × + − − + − −

..., 1 j,0,0,0,1 j,0,0,0,0,0,0,0, 1 j,0,0,0, 1 j,0,0,0,1 j,...− − + − − − − +

...,0,0,0,1 j,0,0,0,1 j,0,0,0,1 j,0,0}.+ + + (6.3)

The complex time-domain signal is then generated using the Equation (6.4),

()
ST

F

ST

N 2
j 2 k t

SHORT TSHORT k
k N 2

r (t) w (t) S e π Δ

=−

= ⋅∑ (6.4)

where is the symbol windowing function. TSHORTw (t)

The short preamble symbol complex coefficients have non-zero values at every fourth

index, which results in a signal that has a periodicity of SHORTr (t) FFTT 4 0.8us= . It is

thus possible to construct the short preamble train by adding two short preamble

symbols together with one half concatenated symbol, and for the resulting short

preamble train to still remain periodic over the entire duration.

 86

Figure 6.3: The IEEE 802.11a short preamble train.

The short preamble train has a total duration of

() ()SHORT FFT FFTT 2 T 0.5 T= + , (6.5)

() ()SHORTT 2 3.2us 0.5 3.2us 6.4us 1.6us 8.0us.= + = + = (6.6)

The short preamble train can finally then be expressed as

SHORT _ TRAIN SHORT SHORT SHORT SHORT _ CONCAT SHORTr (t) r (t) r (t T) r (t 2T).= + − + −% (6.7)

6.2.3 The IEEE 802.11a Long Preamble Symbol

The IEEE 802.11a long preamble symbol train make up the second half of the PLCP

preamble, and is exactly 8 microseconds in duration. Each long preamble symbol can

be described using the series of complex coefficients

 87

26,26L {1,1, 1, 1,1,1, 1,1, 1,1,1,1,1,1,1, 1, 1,1,1, 1,1, 1,1,1,1,1,0,1, 1, 1,...− = − − − − − − − − − −

...,1,1, 1, 1, 1,1, 1, 1, 1, 1, 1,1,1, 1, 1,1, 1,1, 1,1,1,1}− − − − − − − − − − − − . (6.8)

The complex time domain signal, is then generated using Equation (6.9),

()
ST

F GI 2

ST

N 2
j 2 k (t T)

LONG TLONG k
k N 2

r (t) w (t) L e π Δ −

=−

= ⋅∑ (6.9)

where is the symbol windowing function. TLONGw (t)

Each long preamble symbol has duration of . The final long preamble train is then

constructed by adding two long preambles symbols together with a cyclic prefix of the

long preamble also known as the long preamble guard interval of . The long

preamble guard interval is exactly half the length of the long preambles

FFTT

GI2T

LONG FFT GI2T 2T T ,= + (6.10)

LONGT 6.4us 1.6us 8.0us.= + = (6.11)

The long preamble train can finally then be expressed as

LONG _ TRAIN LONG LONG SHORT LONG _ GUARD _ INTERVAL SHORTr (t) r (t) r (t T) r (t 2T).= + − + −% (6.12)

 88

Figure 6.4: The IEEE 802.11a long preamble train.

6.2.4 The IEEE 802.11a Signal Symbol

The IEEE 802.11a signal symbol is a special symbol that is encoded with information

about the current transmission. The signal symbol carries information about the

amount of OFDM data symbols and their data rates. The 24-bit signal is encoded

using a Convolutional encoding rate of ½ to produce a 48-bit value. This 48-bit signal

value is mapped with BPSK to the 48 OFDM sub-carriers to generate the OFDM

signal symbol. The signal symbol bit assignment is shown below:

Figure 6.5: The IEEE 802.11a signal symbol bit assignment

 89

The 4-bit rate value contains information about the current data rate of the encoded

transmission. Using Table 6.3 together with Table 6.2, it is then possible to exactly

determine the data rate as well as the convolutional encoding rate of the transmission.

Bit 4 is reserved for future use and bit 17 is an even parity for bits 0 – 16. The signal

tail field is set to zero.

Rate (Megabits/s) R1-R4 Rate (Megabits/s) R1-R4

6 1101 24 1001

9 1111 36 1011

12 0101 48 0001

18 0111 54 0011

Table 6.3: Contents of the IEEE 802.11a Signal Field

6.2.5 The IEEE 802.11a Data Symbol

The process described in Table 6.4 generates an IEEE 802.11a data symbol.

Nr Action

1 The digital data set intended for transmission is passed to a convolutional

encoder; the result is a data set combined with error correction data.

2 The digital data bits are the mapped to complex coefficients using the

appropriate sub-carrier modulation method.

3 The complex coefficients are mapped to the correct frequency spectrum

locations.

4 The reference sub-carriers complex coefficients are added to the correct

frequency spectrum locations.

5 The resulting complex coefficients are converted to a time domain signal using

the IDFT function block

6 A Guard Interval (Cyclic Prefix) is added to the signal

7 The resulting symbol is buffered and prepared for transmission by the hardware.

Table 6.4: IEEE 802.11a Data Symbol generation process

 90

6.2.5.1 Convolutional encoding of the digital data

The convolutional encoding of the digital data is not looked at for the purpose of this

thesis; please refer to Section 17.3.5.5 of the IEEE 802.11a Part 11 specifications [1].

6.2.5.2 Mapping Digital Data Bits to Complex Coefficients

Digital data bits are mapped to complex coefficients using BPSK, QPSK, 16-QAM or

64-QAM modulation. Refer to Appendix B for detail about the mapping process. The

results of the digital modulation is a series of SDN 48= complex coefficients denoted

0,47D .

6.2.5.3 Mapping the Complex Coefficients to the Frequency Spectrum Locations

The complex coefficients are then mapped to a new series of complex

coefficients denoted as using the mapping function where

0,47D

26,26B− M(k)

k 26; 0 k 4
k 25; 5 k 17
k 24; 18 k 23

M(k) .
k 23; 24 k 29
k 22; 30 k 42
k 21; 41 k 47

− ≤ ≤⎧ ⎫
⎪ ⎪− ≤ ≤⎪ ⎪
⎪ ⎪− ≤ ≤

= ⎨ ⎬− ≤ ≤⎪ ⎪
⎪ ⎪− ≤ ≤
⎪ ⎪

− ≤ ≤⎩ ⎭

 (6.13)

6.2.5.3 Adding the Reference Carriers

The contribution of the reference carriers are given by the following series of complex

coefficients

26,26P {0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0...− =

...,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0}.− (6.14)

 91

Finally, the complex coefficients which will be converted to a time-domain signal are

given by

26,26 26,26 26,26C B P− − − .= + (6.15)

6.2.5.4 Converting the Data Symbol to a Time-Domain Signal

The complex time-domain signal is then generated using Equation (6.16),

()
ST

F

ST

N 2
j 2 k t

DATA TDATA k
k N 2

r (t) w (t) C e π Δ

=−

= ⋅∑ (6.16)

where is the symbol windowing function. TDATAw (t)

6.2.5.5 Completing the Data Symbol by Adding a Guard Interval

The complex time domain data symbol is finalised by adding a guard interval to the

front of the OFDM symbol. The guard interval (cyclic prefix) is exactly ¼ of the

length the OFDM symbol

SYM GI DATA GIr (t) r (t) r (t T).= + − (6.17)

6.2.6 Transceiving the IEEE 802.11a Packets

After an IEEE 802.11a packet is generated, it is ready to be transmitted over the

communications medium. For systems transmitting the IEEE 802.11a packets over the

air using electromagnetic waves, special precaution must be taken to abide by the

rules and regulations on transmission power levels for the relevant country. The final

IEEE 802.11a (where CPACKETS is the amount of OFDM data carriers) can be

expressed using Equation (6.18),

 92

IEEE _802.11a SHORT _ TRAIN LONG _ TRAIN SHORT SIGNAL LONG SHORTr (t) r (t) r (t T) r (t (T T= + − + − +))

.

PACKETC 1

SYM LONG SHORT SYM SYM
n 0

r (t (T T T) nT)
−

=

+ − + + −∑ (6.18)

The complete IEEE 802.11a OFDM packet signal rIEEE_802.11a(t) can now be

transmitted over the communication channel.

6.3 Conclusions

In this chapter we discussed the IEEE 802.11a standard of implementing an OFDM

transceiver system. An IEEE 802.11a OFDM packet or frame consists of a long

preamble train followed by a short preamble train, a signal symbol and then the

OFDM data symbol train. The IEEE 802.11a standard incorporates many of the

methods described in the previous chapter on combating the real-life factors

influencing performance. The IEEE 802.11a long and short preambles are used for

initial OFDM symbol synchronisation as well as communication channel estimation

and determining sampling frequency drift. The IEEE 802.11a signal symbol contains

information about the length and the encoding methods used in the current

transmission. The IEEE 802.11a data symbols have 48 usable sub-carriers for

encoding actual data and 4 reference carriers used for phase compensation and

continuous re-synchronisation of the OFDM data symbols. Each OFDM data symbol

has a guard interval used in combating the effects of the channel impulse response as

well as multipath delays. The IEEE 802.11a standard further incorporates a forward

error correction scheme for combating the effects of noise. (Unfortunately it is not

implemented in this thesis) IEEE 802.11a is a robust standard for transmitting data in

noisy office environments. The processes for creating the long and short preambles,

the signal symbols and the data symbols are explained in detail.

The IEEE 802.11a standard defines the different packets with their timings and details

on how to generate them, but does not specify how to implement the IEEE 802.11a

transmitter or receiver. The implementation is left up to the designer and depends

upon many things.

 93

Our implementation of the IEEE 802.11a transceiver system, for instance, is based on

the SDR design methodology. This means that the bulk of the processing in the

transmitter and receiver will be programmed in a software domain. The next chapter

describes the SDR implementation of the IEEE 802.11a transceiver system detail. The

IEEE 802.11a transceiver system is programmed in a programming language called

C++. The IEEE 802.11a transceiver system is initially implemented on a personal

computer for designing and testing, but the final intended hardware platform is an

embedded system.

 94

Chapter 7

SDR implementation of an IEEE 802.11a

OFDM system

7.1 Introduction

One of the main purposes of this thesis is the study and implementation of an IEEE

802.11a OFDM transceiver system. By now we have already discussed the basic

mathematics behind OFDM, which enables us to create routines for encoding and

decoding OFDM symbol trains. The IEEE 802.11a implementation of OFDM

incorporates features into existing OFDM symbols that aids in the decoding of the

OFDM symbol trains, and helps to overcome most of the major negative performance

influencing factors found in practical system. The implementation of this system is

done by means of functions and routines written in a software programming language

called C Plus-Plus (C++). C++ is one of the most popular programming languages in

the world, with compilers available for nearly any hardware environment, from

personal computers to embedded systems. By writing the OFDM encoder and decoder

software in a generalised modular way, it will insure multi platform compatibility,

which means that the OFDM software can easily be ported to many different

hardware systems, depending upon its needed implementation. This chapter

introduces the current hardware implementation as well as the main structures,

libraries and functions used by the software and describes in detail the processes of

encoding and decoding IEEE 802.11a OFDM packets. This chapter together with

Appendices C and D should be used as a guide when working with the actual C++

source code.

 95

7.2 Implementation Overview

The IEEE 802.11a transmitter system is implemented on the following system:

Hardware platform (PC Laptop):

• Intel® Pentium® 4 Processor

• CPU running at 2.8 GHz

• Memory: 512 MB of RAM

• Disk space: 80GB of HDD

• Sound Device: VIA AC’97 Sound Card

Software platform:

• Microsoft Windows XP Professional Version 2002 SP 2

• Borland C++ Builder Professional Version 5.0 Build 12.34

• Port Audio (Soundcard interface software) Version 18.1

• Debugging done with Matlab 6.5 (R13)

The IEEE 802.11 receiver system is implemented on the following system:

Hardware platform (PC Desktop)

• AMD Duron ™ Processor

• CPU running at 1.00 GHz

• Memory: 384 MB of RAM

• Disk Space: Total of 180 GB combined HDD space

• Sound Device: VIA AC’97 Sound Card

Software Platform:

• Microsoft Windows XP Professional Version 2002 SP 2

• Borland C++ Builder Professional Version 5.0 Build 12.34

• Port Audio (Soundcard interface software) Version 18.1

• Debugging done with Matlab 6.5 (R13)

 96

An IEEE 802.11a transmitter basically takes incoming network data, adds error

correction bytes, modulates the data into OFDM signals with a bandwidth of 20 MHz,

upconverts the complex baseband signal to a high frequency carrier and then transmits

that signal over the air using electro-magnetic waves. The IEEE 802.11a receiver

receives the signal, downconverts it to baseband, decodes the OFDM signal, corrects

the faulty data, and returns the original network data as output.

The IEEE 802.11a transmitter built for the purpose of this thesis is based on the

standards of the IEEE 802.11a modulation scheme, but does not include everything

the specification specifies. The OFDM encoding software takes test input data, but

does not add any error correction data to it. The entire OFDM signal is compressed

into a 44.1kHz signal and that signal is not upconverted or transmitted over the air.

Instead, the complex baseband signal is transmitted over a pair of copper wires to the

receiver. The receiver receives the signals and decodes the OFDM signal, returning

the original data as output.

The main differences between a fully IEEE 802.11a compliant system and the current

implemented system are shown in Table 7.1.

Nr Parameter IEEE 802.11a system Implemented

System

1 Transmit/Receive Data Network Data Test Data

2 Error Correction Convolutional Coding None

3 OFDM signal Bandwidth 20 MHz 44.1 kHz

4 Up conversion to carrier signal Yes No

5 Transmission channel Electromagnetic waves Stereo copper cables

6 Hardware platform Embedded Systems Personal Computer

Table 7.1: Differences between the IEEE 802.11a system and the implemented

system.

 97

The lack of an appropriate analogue frontend, ADC and DAC makes it impossible for

the system to use the intended 20 MHz of bandwidth for the OFDM signal, to

upconvert the signal to the transmission frequency or to transmit the signal using radio

waves. These apparent shortcomings do not however stop us from using and testing

the OFDM transceiver system. By using the following Discrete Fourier Transform

property, it is possible to scale the frequency of the transmitted signal, by increasing

or decreasing the time signal by a certain factor:

DFT 1 fs(an) S .
a a

⎛ ⎞⎯⎯⎯→ ⎜ ⎟
⎝ ⎠

 (7.1)

It is thus now possible to use the ADC and DAC within a personal computer’s

soundcard to transmit and receive the signals. The intended 20 MHz complex

baseband signal can be scaled down to 44.1 kHz, which the computer sound card can

handle. The scale factor can thus be calculated as:

6

3

20MHz 20 10a 453.5
44.1kHz 44.1 10

×
= = ≈

×
 (7.2)

The IEEE 802.11a OFDM signal can now be scaled down to this lower frequency

prior to transmission. A pair of copper stereo cables between the transmitting and

receiving computer replaces the analogue front-end and acts as the communications

channel.

The lack of the IEEE 802.11a forward error correction scheme at the transmitter and

receiver will also not be a problem, since it will force us to examine the received data

stream as it is, of which statistics, such as the bit error rates can directly be

determined.

7.3 Hardware Implementation

Software Defined Radio is an architecture where all possible processing resides in a

software domain. Different software packages performing different digital signal

processing and mathematical processes can be combined to define the operation of the

 98

hardware device. As mentioned, one of the advantages of SDR is that the software is

portable, so it can be designed and tested on a certain hardware platform, and then

later ported to the intended embedded hardware when finished.

The final intended hardware platform for this project is a small, embedded IEEE

802.11a transceiver system and is shown in Figure 7.1.

Figure 7.1: The intended IEEE 802.11a SDR transceiver system

The current SDR hardware platform is two personal computers running the IEEE

802.11a software packages. The two personal computers are connected together using

copper stereo sound cables that act as the communications channel, shown in Figure

7.2.

 99

 Fi
gu

re
 7

.2
: T

he
 Im

pl
em

en
te

d
IE

EE
 8

02
.1

1a
 b

as
ed

 sy
st

em

 100

7.4 Software Implementation

As mentioned, the IEEE 802.11a based OFDM transceiver system is programmed in

C++. The complete software package consists of two major parts, namely the OFDM

transceiver libraries and the Graphical User Interface (GUI). The OFDM transceiver

libraries include the programs for encoding and decoding the IEEE 802.11a based

OFDM symbol trains as well as a library for interfacing the transceiver with the

current hardware platform through the soundcard. The GUI acts as a simple user

interface for demonstrating the capabilities of the OFDM libraries.

7.4.1 The Graphical User Interface

The GUI does not do any serious processing in regards to the OFDM transceiver, but

it plays an important part in demonstrating the capabilities of the OFDM libraries, and

gives a clear picture of how the system works as a whole. The GUI is titled OFDM

Real time Encoding/Decoding Demo Version 1.00, and is used as both the OFDM

transmitter and the OFDM receiver. For demonstration purposes, the GUI must be

running on both the transmitter and receiver system.

The GUI enables the user to perform the following functions:

• Initialise and deinitialise the OFDM libraries.

• Initialise and deinitialise the audio devices.

• Selecting of a suitable audio device from a list of available devices.

• Encoding and transmission of IEEE 802.11a OFDM data:

o Initiate the OFDM transmitter system. (For transmission of a test

image or a test data packet)

o Load transmission data. (A test image, or test data packet)

o Displays the transmission data, if it is a test image.

o Encodes the transmission data into an IEEE 802.11a OFDM data

packet.

o Adds AWGN to the OFDM data packet, if desired.

o Transmits the IEEE 802.11a data packet across the audio device.

 101

o Transmits the IEEE 802.11a data packet to a local data file, for test

purposes.

• Receiving and decoding of IEEE 802.11a OFDM data:

o Initiate the OFDM receiver system. (For transmission of a test image

or a test data packet)

o Enable or disable the reference carrier phase compensation algorithm

in the decoder.

o Receive and decode the IEEE 802.11a OFDM data from an audio

device.

o Receive and decode the IEEE 802.11a OFDM data from a local file.

o Displays the received test image.

o Load comparative data. (An test image or a test data packet)

o Displays the comparative test image.

o Compare the decoded received data against the comparative data.

o Displays the total amount of data bits transferred.

o Displays the total amount of incorrect data bits received.

o Displays the Bit-error rate of the received data.

• Calibrates Sound Device Volume Settings:

o Transmits a full volume sine wave for 10 seconds over the sound

device for calibration purposes.

o Receives the calibration sine wave and determines whether any

clipping has occurred, in which case the transmitted volume needs to

be reduced.

• Useful user feedback messages in the main message window, shows the user

exactly what the program is doing.

 102

E

G

F

J

D

C

B

A

I

Fi
gu

re
 7

.3
: T

he
 O

FD
M

 E
nc

od
in

g/
D

ec
od

in
g

D
em

o
G

U
I

H

 103

Table 7.2 explains some of the functions available on the OFDM Encoding/Decoding

Demo GUI. The Code parameter refers to the marked locations on Figure 7.3.

Code Functions Function Details

A Audio Initiate, Audio

Deinitiate, OFDM Initiate,

OFDM Deinitiate

Initialisation and de-initialisation of the OFDM

libraries and the audio devices. At start up, one

needs to Initiate the Audio and OFDM.

B Transmitter initiate for

Data; Transmitter Initiate

for Image; Load transmit

file; Encode; Add Noise;

Transmit Audio; Save to

file

OFDM Transmitter routines: Initiating the

OFDM transmitter for transmitting a test image

or a test data packet; loading the data; encoding

the IEEE 802.11a OFDM packet; adding AWGN

to the transmission; Transmitting the signal over

the sound device or to a local test file

C Receiver Initiate for Data;

Receiver Initiate for

Image; Decode From File;

Decode From Audio;

Load comparer File;

Receive Audio, Compare;

Save To File

OFDM Receiver routines: Initiating the OFDM

receiver for receiving and decoding a test image

or a test data packet; decoding the signal from

file or from the sound device; Load the

comparative data; Comparing the received data

to the comparative data; Saving the received

transmission to file.

D Noise SNR Setting transmit AWGN SNR in dB

E Transmission Image Displays the transmission test image

F Received Image Display Displays the received test image

G Comparative Image Displays the comparative test image

H Audio Options Audio Device Options and selection menu

I Message Window The message window shows current program

activity and messages

J Receiver-Comparer

Statistics

Receiver data statistics shows amount of received

bits, erroneous received bits and BER

Table 7.2: Guide to the functions of the OFDM Encoding/Decoding Demo GUI

 104

7.4.2 The Software Structures

C++ structures are basically a group of variables and buffers grouped under a

common name for ease of use. The OFDM transceiver software uses five main

structures to group the different variables that are used by the different software

libraries. Structures are passed to and from functions that process the variables

contained within them.

The five different structures are:

1. The OFDM specifications structure

2. The OFDM transmitter structure

3. The OFDM receiver structure

4. The OFDM comparer structure

5. The OFDM audio structure

7.4.2.1 The OFDM specification structure

The main OFDM specification structure contains information on the physical makeup

of the OFDM signal, which includes OFDM frequency and timing specifications. This

structure is known by its C++ name: OFDM_Specification_struct and is located in

the C++ file: OFDM.h. For a list of complete structure details please refer to

Appendix C.1.

An overview of the information stored in the OFDM specification structure is:

• OFDM frequency specifications.

• OFDM signal timings.

• OFDM signal sample sizes.

• OFDM sub-carrier modulation specifications.

• OFDM data sub-carrier frequency spectrum locations.

• OFDM reference sub-carrier frequency spectrum locations.

• OFDM reference sub-carrier values.

 105

• IEEE 802.11a OFDM long preamble buffer.

• IEEE 802.11a OFDM long preamble guard interval buffer.

• IEEE 802.11a OFDM short preamble buffer.

• IEEE 802.11a OFDM signal symbol buffer.

• The Discrete Fourier Transform (DFT) twiddle factors.

• The Inverse Discrete Fourier Transform (IDFT) twiddle factors.

• The real and imaginary time domain buffers for the IDFT and DFT.

• The real and imaginary frequency spectrum buffers for the IDT and DFT.

• The magnitude and phase frequency spectrum buffers for the IDFT and DFT.

• Boolean checks to indicated an initiated OFDM specification structure.

7.4.2.2 The OFDM transmitter structure

The OFDM transmitter structure contains information about the transmission data, the

transmission OFDM encoding process and contains pointers to the signal transmission

arrays. This structure is known by its C++ name: OFDM_transmitter_stuct and is

located in the C++ file: OFDM_transmitter.h. For a list of complete structure details

please refer to Appendix C.2.

An overview of the information stored in the OFDM transmitter structure is:

• The total amount of bytes and bits in the transmission.

• The total amount of data symbols in the transmission.

• Sub-carrier and OFDM modulation information.

• The buffers that store the transmission bits and bytes.

• The transmission signal I (real) & Q (imaginary) buffers.

• A single symbol temporary I (real) & Q (imaginary) buffers.

• The transmit filename and file type.

• The Signal-to-Noise ratio of the added noise. (if used)

• Boolean checks to indicate initiated transmit data and buffers.

• Boolean checks to indicate complete transmission encoding.

 106

7.4.2.3 The OFDM receiver structure

The OFDM receiver structure contains information about the process of receiving and

decoding OFDM signals. The structure is known by its C++ name:

OFDM_receiver_struct and is located in the C++ file: OFDM_receiver.h . For a list

of complete structure details please refer to Appendix C.3.

An overview of the information stored in the OFDM receiver structure is:

• The expected amount of OFDM data symbols.

• Sub-carrier and OFDM modulation information.

• The receiving signal I (real) & Q (imaginary) buffers.

• A primary decoding/receiving buffer.

• Receive-from-file filename and information.

• Receiver state machine current state information.

• Energy threshold values. (State 1)

• IEEE 802.11a short preamble cross-correlation signal buffers. (State 2)

• IEEE 802.11a short preamble cross-correlation results. (State 2)

• IEEE 802.11a long preamble cross-correlation signal buffers. (State 2)

• IEEE 802.11a long preamble cross-correlation results. (State 2)

• Combined IEEE 802.11a short and long preamble cross-correlation signal

buffers. (State 2)

• Combined IEEE 802.11a short and long preamble cross-correlation results.

(State 2)

• IEEE 802.11a short preamble start position. (State 2)

• IEEE 802.11a long preamble start position. (State 2)

• IEEE 802.11a signal symbol start position (State 2)

• IEEE 802.11a first data symbol start position. (State 2)

• Channel transfer function details from IEEE 802.11a long preamble. (State 3)

• IEEE 802.11a signal symbol information. (State 3)

• Miscellaneous decoding variables. (State 4)

• OFDM data sub-carrier frequency spectrum locations. (State 4)

 107

• OFDM reference sub-carrier frequency spectrum locations.

• Buffers to store the decoded data bits and bytes.

• Buffer to store the OFDM sub-sample offset values.

• Boolean checks to indicate decoding errors.

• Boolean checks to indicate decoding completion.

7.4.2.4 The OFDM comparer structure

The OFDM comparer structure contains information about the comparative data,

which is used to compare the received data to. It also contains some statistics about

the received OFDM data. The structure is known by its C++ name:

OFDM_comparer_struct and is located in the C++ file: OFDM_comparer.h. For a

list of complete structure details please refer to Appendix C.4.

An overview of the information stored in the OFDM comparer structure is:

• The comparative data.

• The total data bits of the comparative data.

• The total data bits of the received data.

• The total amount of erroneous data bits in the received data.

• The bit-error-rate (BER) of the received data.

• A Boolean check to indicate the comparing process is complete.

7.4.2.5 The OFDM audio structure

The OFDM audio structure contains information about the audio device interface and

links it to the received/transmitted data. The structure is known by its C++ name:

OFDM_audio_struct and is located in the C++ file: OFDM_audio.h. For a list of

complete structure details please refer to Appendix C.5.

An overview of the information stored in the OFDM audio structure is:

• A Boolean check to indicate that the audio initialisation is complete.

 108

• Information about the number of audio devices found on the system.

• Information about each audio device on the system.

• Information about the current selected audio device.

• Boolean checks to indicate selected and ready audio devices.

There are two other structures used by the independent audio libraries to interface

with the transmission data. They act as temporary interface structures and stores

information about current audio device activities and buffers. The two structures are

known by their C++ names as, PaSoundCardPlaybackDataStruct and

paSoundCardRecordedDataStruct. They are never directly used or altered by the

OFDM software.

7.4.3 The Software Libraries

The IEEE 802.11a OFDM transceiver libraries include all the functions, variables and

structures for encoding and decoding the IEEE 802.11a based OFDM symbols and

symbol trains. Libraries are basically container files, which houses different

structures, variables and functions. It is the part of the software that can be ported for

use on different hardware platforms. Included in these libraries is the OFDM audio

interface library that interfaces the transceiver with the current hardware

implementation.

The six main OFDM libraries are:

1. The main OFDM library.

2. The OFDM mathematics library.

3. The OFDM transmitter library.

4. The OFDM receiver library.

5. The OFDM comparer library.

6. The OFDM audio interface library.

These libraries work together to process the data and encode or decode OFDM

symbol trains.

 109

7.4.3.1 The Main OFDM Library

The main OFDM library is basically used to create and initialise the main OFDM

structures, buffers and variables, and contains some basic functions, which can be

used by all the other libraries. The two C++ files which contains the main OFDM

library are: OFDM.cpp and OFDM.h. The Main OFDM library is basically the

container file for the OFDM specifications structure, and all the functions to use and

manipulate it. For a list of function details please refer to Appendix C.6.

The functions within the main library basically do the following:

• Initiates the OFDM specifications structure.

• Cleans time and frequency DFT/IDFT buffers.

• The IDFT function block.

• The DFT function block.

• Converts the real and imaginary frequency spectrum to its equivalent

magnitude and phase spectrum.

• Creates the DFT and IDFT twiddle factors.

• Creates the IEEE 802.11a long preamble symbol.

• Creates the IEEE 802.11a long preamble guard interval.

• Creates the IEEE 802.11a short preamble symbol.

• De-initiates the OFDM specification structure.

7.4.3.2 The OFDM Mathematics Library

The OFDM mathematical library contains mathematical functions that is used in the

transmission and receiving of OFDM data symbol trains. The two C++ files which

contains the OFDM mathematic library are: OFDM_Math.cpp and OFDM_Math.h.

For a list of function details please refer to Appendix C.7.

 110

The functions within the mathematical library basically do the following:

• Cross-correlation between two data sets.

• Search for maximum values and their locations inside buffers.

• Search for minimum values and their locations inside buffers.

• Calculate the root-mean-square (RMS) of a buffer.

• Map data bits (or arrays thereof) to QPSK phases.

• De-map single QPSK phases (or arrays thereof) to data bits.

• Convert a 8-bit binary array to a byte (or arrays thereof).

• Convert a byte (or arrays thereof) to an 8-bit binary array.

• Rounding of a float-type variable.

• Return the reverse of an array.

• Return the conjugate of an array.

• Convert a normalised float to a 16-bit word and then to two 8-bit bytes.

• Convert two 8-bit bytes to a 16-bit word and then a normalised float.

• Calculate the absolute value of a float-type C++ variable.

• Return the quadrant in which a phase is located.

• Calculate the amount of differences between two data sets.

• Unwrap a phase value and calculate the minimum distance to 0 degrees.

• Unwrap a phase value and calculate the minimum distance to 180 degrees.

7.4.3.3 The OFDM Transmitter Library

The OFDM transmitter library contains functions and a structure used in the encoding

and transmitting of IEEE 802.11a OFDM data streams. The two C++ files which

contains the OFDM transmitter library are: OFDM_transmitter.cpp and

OFDM_transmitter.h. The OFDM transmitter library contains the OFDM

transmitter structure and functions for initiating and manipulating it. For a list of

function details please refer to Appendix C.8.

 111

The functions within the OFDM transmitter library basically do the following

• Initiates the OFDM transmitter structure.

• Get the filename and load the transmission data. (image or data packet)

• Adds all the IEEE 802.11a preambles to the transmission buffer.

• Adds the IEEE 802.11a signal symbol to the transmission buffer.

• Convert IEEE 802.11a OFDM data phases to complete IEEE 802.11a data

symbols.

• Adds a IEEE 802.11a data symbol to the transmission buffer.

• Saves the IEEE 802.11a transmission to file.

• Adds AWGN to the IEEE 802.11a transmission file.

7.4.3.4 The OFDM Receiver Library

The OFDM receiver library contains functions and a structure used in the receiving

and decoding of IEEE 802.11a OFDM data streams. The two C++ files which

contains OFDM receiver library are: OFDM_receiver.cpp and OFDM_receiver.h.

The OFDM receiver library houses the OFDM receiver structure and functions for

initiating and manipulating it. For a list of function details refer to Appendix C.9.

The functions within the OFDM receiver library basically do the following:

• Initiates the OFDM receiver structure, by calling functions to:

• Create and clear the receiving buffers.

• Setup the receiving buffers and variables.

• Get the filename, the data and data size when decoding from local test files.

• Start decode from a local file, by loading the test file into a transmission buffer

and then calling the decoder state machine.

• Start decode from a sound buffer, by linking the received sound buffer to the

decoder state machine.

• Start the decoder state machine. (buffer decoder)

• Decoder State 1, Signal Energy Detection.

 112

• Decoder State 2, IEEE 802.11a short and long preamble train cross-

correlation. (complete initial synchronisation)

• Decoder State 3, extract the IEEE 802.11a long preamble information for use

in channel transfer function estimation, extract data from the signal symbol.

• Decoder State 4, extract and decoder IEEE 802.11a data from the

transmission.

• Decoder State 4, calls the functions that:

• Create phase shifts from a range sub-sample offsets.

• Adds the phase shifts to current reference phase values.

• Calculate best-fit solution for sub-sample offset.

• Compensate OFDM phases for sub-sample offset.

• Save the received transmission to file.

• Update the GUI received image.

7.4.3.5 The OFDM Comparer Library

The OFDM comparer library contains functions and a structure used in comparing the

received IEEE 802.11a OFDM data stream with comparative data, to produce

performance result statistics. The two C++ files which contains the OFDM comparer

library are: OFDM_comparer.cpp and OFDM_comparer.h. The OFDM comparer

library also houses the OFDM comparer structure and functions for initiating and

manipulating it. For a list of function details refer to Appendix C.10.

The functions within the OFDM comparer library basically do the following

• Initiates the OFDM comparer structure.

• Get the filename and load the comparative data.

• Compare the received data with the comparative data.

 113

7.4.3.6 The OFDM Audio Library

The OFDM audio library contains functions and a structure used by the OFDM

transceiver program to interface with the hardware audio devices. The two C++ files

which contains the OFDM audio library are: OFDM_audio.cpp and

OFDM_audio.h. The OFDM audio library also houses the OFDM audio structure

and functions for initiating and manipulating it. For a list of function details refer to

Appendix C.11.

The functions within the OFDM audio library basically do the following;

• Initiates the OFDM audio structure and the audio devices.

• Callback functions for audio playback and recording.

• Select appropriate audio devices.

• Playback the IEEE 802.11a encoded transmission.

• Playback the calibration sine wave.

• Record the IEEE 802.11a encoded transmission.

• Record the calibration sine wave.

• Evaluate the calibration sine wave.

• Close the audio devices.

7.4.4 Conclusions on the software implementation

So far, the software structures and libraries has been introduced and quickly

explained, but as separate entities they can’t perform any real tasks. Specific library

functions and structures together with the GUI need to be linked together to form a

logical chain of events which will produce the desired results, such as encoding digital

data into IEEE 802.11a OFDM packets, or receiving the IEEE 802.11a OFDM

packets and decoding them into digital data. The next section will attempt to explain

in detail what happens in each part of the IEEE 802.11a transceiver system, in regards

to function, variables, buffers, structures and libraries.

 114

7.5 The Complete IEEE 802.11a Transceiver System

The intended IEEE 802.11a hardware platform and the basic software structures and

libraries have been introduced, and it is now possible to describe the implemented

IEEE 802.11a transceiver in detail.

7.5.1 The IEEE 802.11a Transmitter

The implemented IEEE 802.11a transmitter can be explained using the following flow

diagram in Figure 7.4.

Figure 7.4: The implemented IEEE 802.11a OFDM transmitter flowchart

 115

7.5.1.1 The Encoding/Transmitting Process Overview:

The complete IEEE 802.11a encoding process can be summed up as:

1. Initiating the OFDM audio system.

2. Initiating the main OFDM specifications.

3. Selecting an appropriate sound device for output. (if needed)

4. Initiating the OFDM transmitter for a test data packet or a test image.

5. Loading the appropriate test data.

6. Encoding the test data into an IEEE 802.11a OFDM packet.

7. Adding AWGN to the transmission. (if needed)

8. Transmitting the IEEE 802.11a OFDM packet to file or to the sound device.

7.5.1.2 Initiating The OFDM Audio system

Initiating the OFDM audio system is done by pressing the “Audio Initiate” button

located at “A” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This action

will call the Audio_Initiate_Audio function located in the OFDM_audio library.

The flowchart in Figure 7.5 explains the processes, functions and actions involved in

initiating the OFDM audio devices

 116

Figure 7.5: The OFDM audio initiation flowchart

7.5.1.3 Initiating The Main OFDM Specifications

Initiating the main OFDM specifications is done by pressing the “OFDM Initiate”

button located at “A” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This

action will call the OFDM_Initiate_All function located in the OFDM library. The

flowchart in Figure 7.6 explains the processes, functions and actions involved in

initiating the main OFDM specifications.

Figure 7.6: The main OFDM specifications initiation flowchart

 117

7.5.1.4 Selecting an Appropriate Sound Device For Output

Selecting an appropriate sound device with output capabilities is done by selecting

one of the available sound devices in the combo box located at “H” on the OFDM

encoding/decoding Demo GUI in Figure 7.3. This action will call the function:

Audio_Change_Audio_Device_With_ComboBox located in the OFDM_audio

library. The flowchart in Figure 7.7 explains the processes, functions and actions

involved in selecting different sound devices

Figure 7.7: The selection of an appropriate sound device for output flowchart

7.5.1.5 Initiating The OFDM Transmitter

Initiating the OFDM transmitter for the transmission of a test data packet is done by

pressing the “Transmitter Initiate for Data” button located at “B” on the OFDM

encoding/decoding Demo GUI in Figure 7.3. This action will call the

OFDM_Transmitter_Init_Data_Transmitter function located in the

OFDM_transmitter library.

 118

Initiating the OFDM transmitter for the transmission of a test image is done by

pressing the “Transmitter Initiate for Image” button also located at “B” on the OFDM

encoding/decoding Demo GUI in Figure 7.3. This action will call the

OFDM_Transmitter_Init_Image_Transmitter function also located in the

OFDM_transmitter library. The flowchart in Figure 7.8 explains the processes;

functions and actions involved in initiating the OFDM transmitter for both test data

and test image transmission.

Figure 7.8: The OFDM transmitter initiation flowchart

 119

7.5.1.6 Loading The Appropriate Test Data

The appropriate test data is loaded by pressing the “Load Transmit File” button

located at “B” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This action

will call the OFDM_Transmitter_Load_Transmit_File function located in the

OFDM_transmitter library. The flowchart in Figure 7.9 explains the processes,

functions and actions involved in loading the test data.

Figure 7.9: The loading of a transmission file flowchart

The GUI program is capable of loading and transmitting two types of data. The first is

a test image and the second is a smaller test data packet. The test images are mainly

used for demonstrative purposes and simulation tests and are relatively large in size.

The test data packets are smaller in size and are mainly used in the real-time buffered

system tests.

 120

The test image parameters are chosen very specifically so that its OFDM encoded data

occupies exactly 4096 data symbols, which is also the maximum allowed OFDM data

symbols according to the IEEE 802.11a specifications. The image parameters are

shown in Table 7.3.

Image Parameter Value

Image format Standard uncompressed Bitmap

Image Height 192

Image Width 256

Image Colour Depth 8 bits (1 byte) greyscale

Table 7.3: Test image parameters.

The total amount of image bits can be calculated as the product of its height, width

and image colour depth,

()()()Total Image Bits = Width Height Colour Depth , (7.3)

which is

()()()Total Image Bits = 256 192 8 393216.= (7.4)

The total amount of digital data bits an IEEE 802.11a OFDM packet can encode can

be calculated as the product of the bits per data carrier, the amount of data carriers per

OFDM symbol and the total amount of OFDM data symbols,

()
()
()

Total Encoded Bits = Total OFDM data symbols

 Data Carriers per Symbol

 Bits per Data Carrier ,

×

×

 (7.5)

which is

Total Encoded Bits = (4096)(48)(2) = 393216. (7.6)

 121

The results from (7.4) and (7.6) are the same, which proves the fact that the test

images will occupy exactly 4096 OFDM data symbols.

The test data packets are smaller than the test images, and have only 6144 bytes or

49152 bits each. Rewriting Equation (7.5), we can calculate the amount of OFDM

data symbols the test data packets will occupy as

()
()()

Total Encoded Bits
OFDM data symbols= ,

Data Carriers per Symbol Bits per Data Carrier
 (7.7)

which is

()
()()
49152

OFDM data symbols= 512.
48 2

= (7.8)

The test data packets are small with an estimated 1-second transmission time over the

computer sound card, in opposed to the estimated 7-second transmission time of the

test images. As mentioned, the small data packets are mainly used in the real-time

buffered transmission test. It reduces the total testing time due to the massive amount

of tests needed to statistically validate the system.

7.5.1.7 Encoding The Test Data

Encoding the test data into an IEEE 802.11a OFDM packet is done by pressing the

“Encode” button located at “B” on the OFDM encoding/decoding Demo GUI in

Figure 7.3. This action will call the OFDM_Transmitter_Encode function located in

the OFDM_transmitter library. The flowchart in Figure 7.10 explains the processes,

functions and actions involved in encoding the IEEE 802.11a OFDM packet.

 122

Figure 7.10: The encoding of an IEEE 802.11a OFDM packet flowchart

 123

7.5.1.8 Adding AWGN To The Transmission

Adding AWGN to the transmission is done by pressing the “Add Noise” Button

located at “B” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This action

will call the OFDM_Transmitter_Add_Noise function located in the

OFDM_transmitter library. The SNR of the AWGN is determined by the value

entered at “Noise SNR” text box located at “D” on the OFDM encoding/decoding

Demo GUI in Figure 7.3. The flowchart in Figure 7.11 explains the processes,

functions and actions involved in adding AWGN to the transmission signal.

Figure 7.11: Adding AWGN to the transmission signal flowchart

7.5.1.9 Transmitting The IEEE 802.11a OFDM Packet

Transmitting the IEEE 802.11a OFDM packet to the sound device is done by pressing

the “Transmit Audio” button located at “B” on the OFDM encoding/decoding Demo

GUI in Figure 7.3. This action will call the Audio_Play_Transmission function

located in the OFDM_audio library. Transmitting the IEEE 802.11a OFDM packet to

a file is done by pressing the “Save to File” button located at “B” on the OFDM

encoding/decoding Demo GUI in Figure 7.3. This action will call the

OFDM_Transmitter_Save_Transmission_To_Custom_File located in the

 124

OFDM_transmitter library. The flowchart in Figure 7.12 explains the processes,

functions and actions involved in adding AWGN to the transmission signal.

Figure 7.12: Transmitting the IEEE 802.11a OFDM packet flowchart

7.5.1.10 Conclusions On The Encoding/Transmitting Process

Sections 7.5.1.2 through 7.5.1.9 attempts to logically explain the process of encoding

and transmitting IEEE 802.11a OFDM packets. The real software libraries, structures

and functions are in actual fact much more complicated. It is recommended that the

information about the graphic user interface (GUI) the software structures, the

software libraries, the explained processes involved, together with Appendices C and

D be used as a guide when working with the raw C++ source code.

 125

7.5.2 The IEEE 802.11a Receiver

The implemented IEEE 802.11a receiver can be explained using the following flow

diagram.

Figure 7.13: The implemented IEEE 802.11a OFDM receiver flowchart

 126

7.5.2.1 The Receiving/Decoding Process Overview

The complete IEEE 802.11a decoding process can be summed up as:

1. Initiating the OFDM audio system.

2. Initiating the main OFDM specifications.

3. Selecting an appropriate sound device for input, if desired.

4. Initiating the OFDM receiver for a test data packet or a test image.

5. Decoding IEEE 802.11a signals.

6. Loading a compare file.

7. Comparing received and comparative data.

8. Saving the transmission to file.

7.5.2.2 Initiating The OFDM Audio System

Initiating the OFDM audio system is done by pressing the “Audio Initiate” button

located at “A” on the OFDM encoding/decoding GUI in Figure 7.3. This process is

exactly the same as in the case of the IEEE 802.11a transmitter; refer to Section

7.5.1.2 for more detail.

7.5.2.3 Initiating The Main OFDM Specifications

Initiating the main OFDM specifications is done by pressing the “OFDM Initiate”

button located at “A” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This

process is exactly the same as in the case of the IEEE 802.11a transmitter, so please

refer to Section 7.5.1.3 for more detail.

7.5.2.4 Selecting an Appropriate Sound Device For Input

Selecting an appropriate sound device with input (recording) capabilities is done by

selecting one of the available devices in the combo box located at “H” on the OFDM

encoding/decoding Demo GUI in Figure 7.3. This process is exactly the same as in

the case of the IEEE 802.11a transmitter: Refer to Section 7.5.1.4 for more detail.

 127

7.5.2.5 Initiating The OFDM Receiver

Initiating the OFDM receiver for the transmission of a test data packet is done by

pressing the “Receiver Initiate for Data” button located at “C” on the OFDM

encoding/decoding Demo GUI in Figure 7.3. This action will call the

OFDM_Receiver_Init_Data_Receiver function located in the OFDM_receiver

library. Initiating the OFDM receiver for the transmission of a test image is done by

pressing the “Receiver Initiate for Image” button also located at “C” on the OFDM

encoding/decoding Demo GUI in Figure 7.3. This action will call the

OFDM_Receiver_Init_Image_Receiver function also located in the

OFDM_receiver library. The flowchart in Figure 7.14 explains the processes;

functions and actions involved in initiating the OFDM receiver for both test data

packets and test image transmission.

Figure 7.14: The OFDM receiver initiation flowchart

 128

7.5.2.6 Decoding IEEE 802.11a Signals

Decoding IEEE 802.11a signals from file is done by pressing the “Decode from File”

button located at “C” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This

action will call the OFDM_Receiver_Start_Decode_From_File function located in

the OFDM_receiver library. Decoding IEEE 802.11a signals from the audio device is

done by pressing the “Decode from Audio” button located at “C” on the OFDM

encoding/decoding Demo GUI in Figure 7.3. This action will call the

Audio_Record_Transmission function located in the OFDM_audio library. The

flowchart in Figure 7.15 to 7.21 explains the processes; functions and actions

involved in decoding IEEE 802.11a signals from local files and from the audio device.

Figure 7.15: Decoding IEEE 802.11a signals from the audio device flowchart

 129

Figure 7.16: Decoding IEEE 802.11a signals from a local file flowchart

Figure 7.17: IEEE 802.11a decoder state machine flowchart

 130

Figure 7.18: IEEE 802.11a decoder state 4, data decoder flowchart

Figure 7.19: IEEE 802.11a decoder state 3, statistics extraction flowchart

 131

Figure 7.20: IEEE 802.11a decoder state 1 and 2

Figure 7.21: IEEE 802.11a decoder sub-sample offset estimator flowchart

 132

7.5.2.7 Loading a Compare File

Loading a compare file is done by pressing the button “Load Compare File” located at

“C” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This action will call

the OFDM_Comparer_LoadCompareFile function located in the

OFDM_comparer library. The flowchart in Figure 7.22 explains the processes;

functions and actions involved in loading a compare file.

Figure 7.22: Loading a compare file flowchart

7.5.2.8 Comparing Received Data

Comparing the received data to comparative data and determining the performance

statistics is done by pressing the button “Compare” located at “C” on the OFDM

encoding/decoding Demo GUI in Figure 7.3. This action will call the

OFDM_Comparer_Compare function located in the OFDM_comparer library.

The flowchart in Figure 7.23 explains the processes; functions and actions involved in

comparing data.

 133

Figure 7.23: Comparing received data flowchart

7.5.2.9 Saving The Transmission to File

Saving the received transmission to file is done by pressing the button “Save To File”

located at “C” on the OFDM encoding/decoding Demo GUI in Figure 7.3. The action

will call the OFDM_Receiver_Save_Transmission_To_Custom_File function

located in the OFDM_Receiver library. The flowchart in Figure 7.24 explains the

processes; functions and actions involved in comparing data.

Figure 7.24: Saving the received transmission to file flowchart

7.5.2.10 Conclusions On The Receiving/Decoding Process

As mentioned earlier, the receiving and decoding of IEEE 802.11a OFDM data as

explained in Sections 7.5.2.2 through 7.5.2.9 attempts to logically explain the

processes involved, but should only be used as a guide. The real software libraries,

structures and functions are in actual fact much more complicated. It is recommended

that the information about the graphic user interface (GUI), the software structures,

the software libraries, the explained processes involved, together with appendices C

and D be used as a guide when working with the raw C++ source code.

 134

7.5.3 Conclusions On The IEEE 802.11a Transceiver System

Sections 7.5.1 and 7.5.2 discussed the IEEE 802.11a transmitter and the IEEE 802.11a

receiver processes in detail. The implemented IEEE 802.11a transceiver system can

now be tested to determine how well it works.

7.6 Conclusions

This chapter introduced the SDR implementation of the IEEE 802.11a based

transceiver system. Two personal computers were used as the hardware platforms.

Their sound devices (sound cards) where connected together using stereo copper

wires which acted as the communications channel. The IEEE 802.11a OFDM

transceiver software is written in C++ and basically consists of a demonstration GUI

and 6 software libraries. The demonstration program has the ability of encoding data

into IEEE 802.11a OFDM packets and transferring it over the communications

channel using the computer sound card. On the receiving computer, the demonstration

program can receive the incoming data using the soundcard and decode the IEEE

802.11a OFDM packets and retrieve the original data. All the software structures,

libraries and processes have been explained in this chapter, and should be used as a

guide when working with the original source code. In the next chapter the

performance of the implemented IEEE 802.11a transceiver system will be tested, to

determine how well it works. The receiver system will be put through a series of

simulation tests as well as real-time tests and influenced with different performance

influencing factors to validate its performance.

 135

Chapter 8

OFDM System Performance Tests and

Results

8.1 Introduction

To determine how well the IEEE 802.11a based OFDM transceiver system works, it is

necessary to test it. By testing different parts of the system and using different types

of test data, it is possible to get a clear picture of how the system will perform in real-

life situations. It also helps to identify parts of the system that needs to be improved.

8.2 Data Performance Tests and Results

The purpose of the IEEE 802.11a based OFDM transceiver system is to take digital

data from a source, manipulate it using the rules set out in the IEEE 802.11a standards

and finally deliver the digital data to a destination device. The most important test of

such a system would thus be a test to determine the quality of the received digital

data. The whole purpose of the IEEE 802.11a standard is to create a system that will

maintain the best possible data quality (also known as the quality of service, since the

service is the delivery of digital data) in the environment it is destined to be used in.

Data performance tests test the quality of the received digital data. The result of these

tests is the BER, which represents the expected amount of errors per unit of data in the

receiver data. Data performance tests are done on simulation data first, to predict the

data quality for different expected real-life factors, but in a controlled environment.

The tests are then expanded to include controlled and measured transmissions over the

communications channel, to gather statistics about the channel and sound devices and

finally real-time communications tests. The three most important data performance

tests that will be conducted on the IEEE 802.11a OFDM packets are shown in Table

8.1.

 136

Nr Test Reason

1 General encoding and

decoding tests without

any performance

influencing factors.

1. Test whether the basic encoding and decoding

processes work.

2. Test the initial OFDM symbol synchronisation

ability of the system.

2 AWGN data

performance tests.

1. Test the receiver in the presence of noise.

2. Comparing the BER at different SNR against

predicted values, will determine how effective the

sub-carrier modulation works.

3 Sampling frequency

drift tests.

1. This will test the continuous re-synchronisation

and phase compensation ability of the receiver.

2. Test the influence of the re-synchronisation

algorithms on normal data.

Table 8.1: The three most important data performance tests.

8.2.1 The Test Data Set

As mentioned in Chapter 7, The OFDM GUI program loads graphical images as test

data for the IEEE 802.11a OFDM packets. It is easier to see the effects of real life

performance influencing factors on the images than on random data. Five images

where used in the data performance tests:

Figure 8.1: Test Image 1

Figure 8.2: Test Image 2 (just white)

 137

Figure 8.3: Test Image 3

Figure 8.4: Test Image 4

Figure 8.5: Test Image 5

Total data bits in each test image:

= (256)(192)(8)

= 393216 bits

8.2.2 Simulation Tests

Simulation tests encode test data into IEEE 802.11a OFDM packets but instead of

transmitting it over the channel, the whole transmission is saved to a local file. This

local file, representing the transmission, is then subjected to different real-life

influences, but in a controlled manner. The altered transmission file is then loaded

into the IEEE 802.11a receiver and decoded. Statistics about the received and decoded

data as well as the receiver it self is then gathered, to see how well it performs. In

these tests, the signal is subjected to AWGN, sampling frequency drift, and

combinations of the two.

8.2.2.1 Simulation Test 1

In this test, the five test images were encoded into IEEE 802.11a OFDM test data. The

test data was NOT altered in any way, and it was given to the receiver to decode.

Reference carrier phase compensation was disabled as part of a combined test to

determine its influence on the receiving/decoding process. The expected results from

these tests are errorless decoded data. The parameters for this test are shown Table

8.2.

 138

Parameter Value

Test type and number: Simulation Test 01

Test data images: Test Image1, Test Image2, Test Image

3, Test Image 4, Test Image 5

Test data set: 10 encodes of each test data image. A

total of 50 tests.

Total amount of digital bits transferred: 50 x 393216 = 19 660 800 bits

= 18.75 Megabits

Reference carrier phase compensation: Disabled

Data influenced by AWGN? No

Data influenced by sampling frequency

drift?

No

Table 8.2: Simulation Test 1 parameters

The results for this test are shown in Table 8.3.

 Amount of times

encoded/ decoded

Amount of bits

encoded/decoded

Decoding

Errors

BER

Test Image 1 10 3932160 0 0

Test Image 2 10 3932160 0 0

Test Image 3 10 3932160 0 0

Test Image 4 10 3932160 0 0

Test Image 5 10 3932160 0 0

Total 50 18,75 Megabits 0 0

Table 8.3: Simulation Test 1 results

The results for this test show that all the encoded data were decoded without any

errors. This means that the initial OFDM symbol synchronisation routines, as well as

the basic IEEE 802.11a OFDM data decoder works correctly when then there is no

interference.

 139

8.2.2.2 Simulation Test 2

In this test, the five test images were encoded into IEEE 802.11a OFDM test data

packets. The encoded signals where subjected to different SNR of AWGN. To

compare the BER of the OFDM encoded signal to the theoretically predicted QPSK

results calculated in Chapter 2, the AWGN added to the OFDM signals is referenced

to each individual OFDM sub-carrier and not to the OFDM signal as a whole. The

relationship can be calculated as [7] (2.14)

dB_ QPSK 10
QPSK Signal PowerSNR 10log .

Noise Power
⎛= ⎜
⎝ ⎠

⎞
⎟

2

 (8.1)

Since the IEEE 802.11a OFDM signal has STN 5= QPSK sub-carriers, the signal

has 52 times more power,

dB_ OFDM 10
52 QPSK Signal PowerSNR 10log ,

Noise Power
×⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (8.2)

which becomes

()dB _ OFDM 10 10
QPSK Signal PowerSNR 10log 10log 52

Noise Power
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (8.3)

and can finally be written as

dB_ OFDM dB_ QPSKSNR SNR 17.16dB.= + (8.4)

In this simulation test, the 17.16dB difference between the OFDM and single QPSK

signals is ignored to see how the BER vs. SNR graphs look relative to each other.

Reference carrier phase compensation was disabled as part of a combined test to

determine its influence on the receiving/decoding process.

 140

The expected results of this test should be values very close to values in Figure 2.6

and Table 2.1, which is the theoretically predicted BER for a QPSK modulated signal.

The parameters for this test are shown in Table 8.4.

Parameter Value

Test type and number: Simulation Test 02

Test data images: Test Image1, Test Image2, Test Image

3, Test Image 4, Test Image 5

Test data set: 5 encodes of each test data image at 10

SNR levels. A total of 250 tests.

Total amount of digital bits transmitted: 250 x 393216 = 98 304 000 bits

= 93.75 Megabits

Reference carrier phase compensation: Disabled

Data influenced by AWGN? Yes, 0dB to 10dB, in 1dB increments

Data influenced by sampling frequency

drift?

No

Table 8.4: Simulation Test 2 parameters

The results for this test are shown in the Figure 8.6.

The BER of the simulated OFDM signal is the same as the BER of the theoretically

predicted QPSK modulated signal as shown by Equation (2.45), Figure 2.6 and Table

2.1. These results further confirm the orthogonality of OFDM encoded signals and

means that the receiver and decoder can correctly decode IEEE 802.11a OFDM

packets in the presents of AWGN.

 141

Figure 8.6: The results of Simulation Test 2

8.2.2.3 Simulation Test 3

In this test, the five test images were encoded into IEEE 802.11a OFDM test data

packets. The encoded signals where subjected to four sampling frequency drifts of –

203 PPM, -102 PPM, 102 PPM and 203 PPM. With this test we can determine

whether sampling frequency drift and the resulting sub-sample offset errors really has

such a big influence on the receiver/decoder, as thought. Reference carrier phase

compensation was disabled, which means the system will have no way of combating

sampling frequency drifts and the resulting sub-sample shifts they introduce. The

expected results of this test is a very poor performance, due to the de-synchronisation

effects of the sampling frequency drift, the decoder should become de-synchronisation

very early in the decoding process and decode the bulk of the data incorrectly. The

parameters for this test are shown in Table 8.5.

 142

Parameter Value

Test type and number: Simulation Test 03

Test data images: Test Image1, Test Image2, Test Image

3, Test Image 4, Test Image 5

Test data set: 5 encodes of each Test Data Image at

the 4 different sample frequency drifts.

A total of 100 tests.

Total amount of digital bits transferred: 100 x 393216 = 39 321 600 bits

= 37.5 Megabits

Reference carrier phase compensation: Disabled

Data influenced by AWGN? No

Data influenced by sampling frequency

drift?

Yes, -203 PPM, -102 PPM, 102 PPM

and 203 PPM

Table 8.5: Simulation Test 3 parameters

The results for this test are shown in Table 8.6.

 Amount of files

encoded/

decoded

BER at

–203

PPM

BER at

–102

PPM

BER at

102 PPM

BER at

203 PPM

Test Image 1 5 0.49 0.483 0.485 0.49

Test Image 2 5 0.49 0.484 0.485 0.49

Test Image 3 5 0.49 0.484 0.485 0.49

Test Image 4 5 0.49 0.483 0.485 0.49

Test Image 5 5 0.49 0.480 0.484 0.49

Average 5 0.49 0.483 0.485 0.49

Table 8.6: Simulation Test 3 results

 143

The results from this test clearly show that the system performed shockingly poor.

The average BER for all the tests was 0.487. This value is very close to 0.5, which

means the system was really just decoding random data. The decoder had an equal

chance of decoding a bit as a 1 or a 0. It thus becomes clear that reference carrier

phase compensation is very important in OFDM decoding in to keep the receiver

synchronised to the OFDM symbols.

The next test would have been a combined AWGN and sampling frequency drift test,

where the test images are subjected to different levels of AWGN together with

different sampling frequency drifts, with the reference carrier phase compensation

algorithm still disabled.

However, due to the fact that the current test scores had a BER of approximately 0.5,

which is the worst possible score, corrupting the signal further with AWGN will have

no real effect of the results.

The combined AWGN and sampling frequency drift test, without reference carrier

phase compensation will thus not be preformed.

8.2.2.4 Simulation Test 4

In this test, the five test images were encoded into IEEE 802.11a OFDM test data. The

test data was NOT altered in any way, and it was given to the receiver to decode.

Reference carrier phase compensation was enabled as part of a combined test to

determine its influence on the receiving/decoding process. The expected results of

these tests are errorless decoded data. The parameters for this test are shown in Table

8.7.

 144

Parameter Value

Test type and number: Simulation Test 04

Test data images: Test Image1, Test Image2, Test Image

3, Test Image 4, Test Image 5

Test data set: 10 encodes of each Test Data Image.

Total of 50 tests

Total amount of digital bits transferred: 50 x 393216 = 19 660 800 bits

= 18.75 Megabits

Reference carrier phase compensation Enabled

Data influenced by AWGN? No

Data influenced by sampling frequency

drift?

No

Table 8.7: Simulation Test 4 parameters

The results for this test are shown in Table 8.8

 Amount of times

encoded/ decoded

Amount of bits

encoded/decoded

Decoding

Errors

BER

Test Image 1 10 3932160 0 0

Test Image 2 10 3932160 0 0

Test Image 3 10 3932160 0 0

Test Image 4 10 3932160 0 0

Test Image 5 10 3932160 0 0

Total 50 18,75 Megabits 0 0

Table 8.8: Simulation Test 4 results

The results of this test show that all the encoded data were decoded without any error.

This means that the reference carrier phase compensation algorithm does work, when

there is no AWGN or sampling frequency drift.

 145

8.2.2.5 Simulation Test 5

In this test, the five test images were encoded into IEEE 802.11a OFDM test data

packets. The encoded signals where subjected to different SNR of AWGN. In this test

the reference carrier phase compensation was enabled. By comparing these results to

the results from Simulation Test 2, it should be possible to determine whether AWGN

has any influence on the reference carrier phase compensation algorithm. The

expected results of this test should be values very close to that of Simulation Test 2.

The parameters for this test are shown in Table 8.9.

Parameter Value

Test type and number: Simulation Test 05

Test data images: Test Image1, Test Image2, Test Image

3, Test Image 4, Test Image 5

Test data set: 5 encodes of each Test Data Image at

10 different SNR levels. Total of 250

tests.

Total amount of digital bits transferred: 250 x 393216 = 98 304 000 bits

= 93.75 Megabits

Reference carrier phase compensation: Enabled

Data influenced by AWGN? Yes, from 0dB to 10dB, in 1dB

increments

Data influenced by sampling frequency

drift?

No

Table 8.9: Simulation Test 5 parameters.

The results for this test are shown in Figure 8.7.

 146

Figure 8.7: BER vs. SNR of the OFDM signal (with and without the reference carrier

phase correction enabled) and a QPSK modulated signal.

From these results we can clearly see a difference between the AWGN tests where the

reference carrier phase compensation algorithm where enabled and disabled. The

average difference is approximately 1.2 dB. The reason for this is that AWGN

influences all the OFDM sub-carriers, including the reference carriers. There is no

induced sampling frequency drift in this test, but the noise on the reference carriers do

influence the reference carriers’ phases. This fools the algorithm in thinking that there

is some small sampling frequency drift. The reference carrier phase compensation

algorithm then attempts to correct these apparent drifts and by doing so causes more

decoding errors. This is referred to as the reference carrier phase compensation

implementation loss due to AWGN. Better algorithm programming could improve

this, but probably never eliminate it completely.

 147

8.2.2.6 Simulation Test 6

In this test, the five test images were encoded into IEEE 802.11a OFDM test data

packets. The encoded signals where subjected to four sampling frequency drifts of –

203 PPM, -102 PPM, 102 PPM and 203 PPM. With the reference carrier phase

compensation ability enabled, we can determine how well the algorithm compensates

sampling frequency drift, when no noise is present. The expected result of this test is

an errorless performance. The reference carrier phase compensation algorithm should

be able to effortlessly correct the sampling frequency drift and compensate for the

resulting phase errors. The parameters for this test are shown in Table 8.10.

Parameter Value

Test type and number: Simulation Test 06

Test data images: Test Image1, Test Image2, Test Image 3,

Test Image 4, Test Image 5

Test data set: 5 encodes of each Test Data Image at 4

different sample frequency drifts.

A total of 20 tests.

Total amount of digital bits transferred: 20 x 393216 = 7 864 320 bits

= 7.5 Megabits

Reference carrier phase compensation: Enabled

Data influenced by AWGN? No.

Data influenced by sampling frequency

drift?

Yes, -203 PPM, -102 PPM, 102 PPM and

203 PPM

Table 8.10: Simulation Test 6 parameters.

The results for this test are shown in Table 8.11.

 148

 Amount of files

encoded/

decoded

BER at

–203

PPM

BER at

–102

PPM

BER at

102 PPM

BER at

203 PPM

Test Image 1 5 0 0 0 0

Test Image 2 5 0 0 0 0

Test Image 3 5 0 0 0 0

Test Image 4 5 0 0 0. 0

Test Image 5 5 0 0 0 0

Average 5 0 0 0 0

Table 8.11: Simulation Test 6 results.

The results from this test show that the reference carrier phase compensation

algorithm was able to correctly re-synchronise and compensate the induced phase

errors in the OFDM signals subjected to sampling frequency drift.

8.2.2.7 Simulation Test 7

In this test, the five test images were encoded into IEEE 802.11a OFDM test data

packets. The encoded signals where subjected to different SNR of AWGN as well as

four sampling frequency drifts of –203 PPM, -102 PPM, 102 PPM and 203 PPM. The

combined AWGN and sampling frequency drift tests, with the reference carrier phase

compensation enabled, simulates the most important performance influencing factors,

and should give results which closely correlates with the results from the real-time

implementation tests later. The parameters for this test are shown in Table 8.12.

Parameter Value

Test type and number: Simulation Test 07

Test data images: Test Image1, 2, 3, 4 and 5

Test data set: 2 encodes of each Test data Image at 10 different

SNR levels, and 4 different sample frequency drifts.

Total of 400 tests.

 149

Parameters for simulation test 7 continues…

Parameter Value

Total amount of digital bits

transferred:

400 x 393216 = 157 286 400 bits

= 150 Megabits

Reference carrier phase

compensation:

Enabled

Data influenced by AWGN? Yes, from 0dB to 10dB, in 1dB increments

Data influenced by

Sample frequency drift?

Yes, -203PPM, -102PPM, 102PPM and 203PPM

Table 8.12: Simulation Test 7 parameters.

The results for this test are displayed in Figure 8.8.

Figure 8.8: Simulation BER vs. SNR of the OFDM signal with reference carrier

phase compensation, with AWGN, and sampling frequency drift.

 150

The results from this test follow the results from the previous test, but shows an

additional implementation lost of approximately 1dB at a SNR of 10dB (purely due to

the sampling frequency drift).

8.2.2.8 Simulation Test Conclusions

From the seven simulation tests we can conclude that

• The OFDM receivers’ initial OFDM symbol synchronisation algorithm works.

• The OFDM receiver decodes data successfully when there are no influencing

factors involved.

• The OFDM receiver sub-carrier demodulation algorithms correctly decode

OFDM sub-carriers in the presence of AWGN.

• Reference carrier phase compensation is clearly needed when OFDM data

packets are subjected to sampling frequency drifts.

• The reference carrier phase compensation works.

• The reference carrier phase compensation algorithm has a 1.2dB

implementation loss due to AWGN only.

• The reference carrier phase compensation algorithm has a 1 dB

implementation loss due to sampling frequency drift.

8.2.3 Initial Sound Device Transmission Tests

Initial sound device transmission tests specifically test the sound device and the

communications channel. These tests encode test data into IEEE 802.11a OFDM

packets and then transmit it over the communications channel. The receiving system

receives the incoming transmission and then records it a local file. This local file,

representing the IEEE 802.11a OFDM packet, is then decoded using the same

procedures and algorithms as the previous simulation tests. The extensive simulation

test results, and the already tested OFDM decoding algorithms, should give us a fairly

good idea of how the system will react to these transmission tests as well as the real-

time tests later.

 151

8.2.3.1 Communications Channel Estimation

As described in Section 5.2.5, channel estimation is done to counteract the effects of

an uneven channel transfer function. To determine the communication channel and

sound device transfer function, we need to create a signal with a flat and infinite

bandwidth. The impulse signal does this, as shown in the following Fourier Transform

pair

DFT(n) 1.δ ⎯⎯⎯→ (8.5)

The impulse was transmitted over the communications channel and recorded at the

receiver. The impulse response is shown in the Figure 8.9.

Figure 8.9: Impulse response of the communications channel and sound device

The communication channel and sound device transfer function was calculated by

taking the DFT of the IEEE 802.11a long preamble. As we can see from Figure 8.10,

the IEEE 802.11a receiver will indeed need to compensate for the effects of the

communication channel transfer function.

 152

Figure 8.10: Transfer function of the communications channel and sound device

8.2.3.2 Determining Sampling Frequency Drift.

The reference carrier phase compensation algorithm can calculate the sound devices’

sampling frequency drift during the OFDM data symbol decoding process. The

algorithm keeps a record of all the decoded OFDM data symbols’ calculated sub-

sample offset. By determining the rate of change of the sub-sample offset during the

decoding process, it is possible to calculate the sampling frequency drift.

The gradient is calculated from Figure 8.11, as

() ()
() ()

Sub-sample offset at Point B Sub-sample offset at Point A
Grad(A, B) ,

Symbol number at point B Symbol number at point B
−

=
−

() ()
() ()

1312 1224 88Grad(A, B) 95.32
1.0377 0.1145 0.9232

−
= =

−
=

 153

Figure 8.11: Calculated sub-sample offset and resulting sample frequency drift

This basically means that the decoder will advance 1 sample after every 95.32 OFDM

data symbols is decoded. Since every OFDM symbol, together with its cyclic prefix /

guard interval is exactly 80 samples in duration. The Gradient can be converted into a

sampling frequency drift,

1e6Sample Frequency Drift = 131.14 PPM.
80 Grad(A,B)

=
×

 (8.6)

The sample frequency drift is thus calculated as 131.14 PPM. This further confirms

that sampling frequency drift is a real issue, especially with such relatively simple

hardware as a personal computer sound device.

8.2.3.3 AWGN performance Test

In this test, the five test images were encoded into IEEE 802.11a OFDM test data

packets. The encoded signals where subjected to different SNR of AWGN and

transmitted over the communications channel. The receiving computer recorded the

 154

transmission and gave it to the IEEE 802.11a OFDM decoder to decode. The

reference carrier phase compensation was enabled. The parameters for this test are

shown in Table 8.13.

Parameter Value

Test type and number: Initial Sound Device Transmission Test 1

Test data images: Test Image1, Test Image2, Test Image 3,

Test Image 4, Test Image 5

Test data set: 5 encodes of each Test Data Image at 10

different SNR levels. Total of 250 tests.

Total amount of digital bits transferred: 250 x 393216 = 98 304 000 bits

= 93.75 Megabits

Reference carrier phase compensation: Enabled

Data influenced by AWGN? Yes, from 0dB to 10dB, in 1dB

increments

Data influenced by sampling frequency

drift?

No

Table 8.13: Initial Sound Device Transmission Test parameters.

The results for this test are shown in the Figure 8.12.

The results show that the initial sound device AWGN test results performed very

close to the simulated sampling frequency drift results as determined in simulation

test 7. This is a good sign, and shows that the simulations are in fact accurate

representations of the real life implementation of the system. It should be noted that

the OFDM decoder sometimes had trouble decoding some of the 0dB test images as

the signal was too poor and the decoder could not successfully synchronise to the

IEEE 802.11a OFDM packets.

 155

Figure 8.12: Initial Sound Device Transmission AWGN Test, BER vs. SNR.

8.2.3.4 Initial Sound Device Transmission Test Conclusions

From the initial sound device transmission tests, we can conclude that:

• Communication channel transfer function and impulse response is a real issue.

Channel estimation is needed for modulation techniques that depend on signal

amplitudes.

• Sampling frequency drift is also a real issue, even when using relatively

simple and slow sampling devices like computer sound cards. This further

emphasises the need for reference carrier phase compensation and continuous

OFDM symbol re-synchronisation algorithms, even if they do introduce an

implementation loss.

• The results from the initial sound device AWGN transmission tests are very

close to the results from the final simulation test. This means that the

simulations are in fact accurate representations of the real life implementation

of the system.

 156

8.2.4 Real-time Buffered Transmission Tests

Real-time buffered transmissions tests are the final data performance tests. The

transmitter encodes test data into an IEEE 802.11a OFDM data packet and transmits it

over the communications channel. The receiver stores the incoming signal in a

receiving buffer, and then attempts to decode the IEEE 802.11a OFDM data packet in

the buffer. The transmission signal is influenced by different levels of AWGN to

determine how well the transceiver system works.

8.2.4.1 The Test Data Set

The real-time buffered transmission tests use different test data than the previous

simulation and initial sound device transmission tests. The new test data packets

contain 6144 bytes (49152 bits) of data. Using the current OFDM encoding

parameters, these smaller data packets will occupy only 512 IEEE 802.11a OFDM

data symbols instead of the 4096 that the test images occupy. This reduces the

transmission time to approximately 1 second and helps speed up the performance

tests. Please refer to Section 7.5.1.6 for more information. The three test data packets

each have random bits of data.

8.2.4.2 AWGN Performance Tests

In this test the three test data packets where encoded into IEEE 802.11a OFDM test

data packets. The encoded signals where subjected to different SNR of AWGN and

transmitted over the communications channel. The receiving computer running the

IEEE 802.11a encoding/decoding Demo GUI received the signals, buffered it and

attempted to decode it. The reference carrier phase compensation algorithm was

enabled. The parameters of this test are shown in Table 8.14.

 157

Parameter Value

Test type and number: Real-time Buffered Transmission Test 1

Test data packets Test Data Packet 1, 2 and 3

Test data set: 5 encodes of each Test Data packet at 10

different SNR levels. Total of 150 tests.

Total amount of digital bits transferred: 150 x 49152 = 7 372 800 bits

= 7.035 Megabits

Reference carrier phase compensation Enabled

Data influenced by AWGN? Yes, from 0dB to 10dB, in 1dB

increments

Data influenced by sampling frequency

drift?

No

Table 8.14: Real-time Buffered Transmission Test parameters.

The results for this test are shown in Figure 8.13.

Figure 8.13: Real-time Buffered Transmission AWGN Test, BER vs. SNR.

 158

The results show that the real-time buffered transmission AWGN test preformed very

close to the initial sound device transmission AWGN test as well as the simulated

sampling frequency drift results as determined in simulation test 7. This means that

the IEEE 802.11 transceiver works and that the sound card drivers interfaced

successfully with the IEEE 802.11a decoding software.

8.2.4.3 Final IEEE 802.11a OFDM decoder performance Graph

In Section 8.2.2.2 we determined that there is in actual fact a 17.16dB difference

between the AWGN BER graphs for QPSK modulated signals and OFDM modulated

signals using QPSK as sub-carrier modulation. Finally it is possible to display the

IEEE 802.11a OFDM performance graph when the signals are influenced by AWGN

and referenced to the entire OFDM signal and not to a OFDM sub-carrier.

Figure 8.14: Final Real-time Buffered Transmission AWGN Test, BER vs. Complete

OFDM Signal SNR.

 159

8.2.4.4 Real-time Buffered Transmission Test Conclusions

From the real-time buffered transmission tests, we can conclude that:

• The real-time buffered transmission tests work.

• That the sound card interface to the IEEE 802.11a OFDM decoder works.

• The results from this test are very close to what we expected with the initial

sound device transmission AWGN tests and the final simulations tests.

8.3 Speed Performance Tests and Results

Speed performance tests determine the IEEE 802.11a OFDM packet encoding and

decoding times on the two different hardware platforms. These tests play a role in

determining the different buffer lengths as well whether the current software will be

able to encode and decode the full bandwidth 20 MHz IEEE 802.11a OFDM data

packets.

8.3.1. Encoding Speed Tests

Encoding speed tests measure the time it takes the software to encode IEEE 802.11a

data packets when it is given the encoding data. The test images as well as the test

data packets where encoded and timed. These tests are performed on both the

transmitter and receiver hardware platforms as described in Chapter 7. The parameters

form this test are shown in Table 8.15.

Parameter Value

Test type and number: Speed Test 01 - Encoding

Test data packets: Test Data Packet 1,2 and 3

Test Image 1,2 and 3

Test data set: 5 encodes of each test file. Total 30 tests.

Total amount of digital bits encoded: 15 x 49152 + 15 x 393216 bits

= 6.328 Megabits

Table 8.15: Speed Test 1 parameters.

 160

The results from the encoding speed test 1 is shown in Table 8.16.

The Encoding Times Hardware

Platform1

Hardware

Platform2

Average Test Image Encoding Time

(encoding time per bit)

486 ms

(1.236 us)

1045 ms

(2.657 us)

Average Test Data Packet Encoding Time

(encoding time per bit)

66 ms

(1.342 us)

136 ms

(2.767 us)

Table 8.16: Speed Test 1 results

8.3.2 Decoding Speed Tests

Decoding speed tests measure the time it takes the software to decode IEEE 802.11a

data packets when the whole signal is given to the decoder. The test images as well as

the test data packets where encoded and saved to file. These files where then given to

the receiver to decode and the decoding process was timed. These tests are performed

on both the transmitter and receiver hardware platforms as described in Chapter 7.

The parameters form this test are shown in Table 8.17.

Parameter Value

Test type and number: Speed Test 02 - Decoding

Test data packets: Test Data Packet 1,2 and 3

 Test Image 1,2 and 3

Test data set: 5 encodes of each test file. Total 30 tests.

Total amount of digital bits decoded: 15 x 49152 + 15 x 393216 bits

= 6.328 Megabits

Reference carrier phase compensation Both On and Off states tested

Data influenced by AWGN? No

Data influenced by sampling frequency

drift?

No

Table 8.17: Speed Test 2 parameters

 161

The results from this test are shown in Table 8.18.

The Decoding Times

(decoding time per bit)

Hardware

Platform1

Hardware

Platform2

Average Test Image Decoding Time with

Reference Carrier Phase Compensation Enabled

1312.5 ms

(3.34 us)

2380 ms

(6.05 us)

Average Test Image Decoding Time with

Reference Carrier Phase Compensation Disabled

770 ms

(1.96 us)

1445 ms

(3.68 us)

Average Test Data Packet Encoding Time with

Reference Carrier Phase Compensation Enabled

198 ms

(4.03 us)

313 ms

(6.37 us)

Average Test Data Packet Encoding Time with

Reference Carrier Phase Compensation Disabled

140 ms

(2.85 us)

176 ms

(3.58 us)

Table 8.18: Speed Test 2 results

8.3.3. Conclusions on Speed Performance Tests

By using Equations (6.2), (7.1) and (7.2) it is possible to calculate the test image and

test data packet transmission times for both the full bandwidth (20 MHz) and the low

bandwidth (44.1 kHz) signals. The results are shown in Table 8.19.

Transmission Times

(transmission time per bit)

Full Bandwidth

(20 MHz) signal

Low Bandwidth

(44.1 kHz) signal

Test Images 16.404 ms

(41.72 ns)

7.44 ms

(18.92 us)

Test Data Packets 2.068 ms

(42.07 us)

0.94 us

(19.12 us)

Table 8.19: IEEE 802.11a Transmission times for full and low bandwidth signals

According to queuing theory [13], a system will only be stable when its service time,

in this case the length of time the system takes to decode the data, is shorter than the

data arrival rate, which is the transmission time and the encoding time.

 162

The average encoding time on hardware platform 1 was 1.29 us per bit but the

average decoding time, with the reference carrier phase compensation enabled on

hardware platform 1 was 3.69 us per bit. So the system takes longer to decode a signal

than to encode it. The average transmission time for the full bandwidth signal is only

41.9 ns per bit and does not influence the arrival rate. The average transmission time

for the low bandwidth signal is 19 us per bit which is slow enough to give the decoder

chance to finish its work. The results from speed test 1 and 2 show that the current

software will not be able to support full bandwidth (20 MHz) real-time IEEE 802.11a

signals. The low bandwidth (44.1 kHz) IEEE 802.11a signals on the other hand has

sufficiently large transmission time: the decoder has enough time to finish decoding

and will thus work.

If we look at the results of the speed tests done on hardware platform 1 (the faster of

the two hardware platforms) we see that the test image encoding time is 486ms and

the test image decoding time is 1312.5ms. The full bandwidth (20MHz) transmission

time of a test image (8.7) is 16.404ms. From these results we can conclude that:

• The decoding time is far longer than the combined encoding time and

transmission time. This means that the receiver will not be able to stay ahead

in decoding received data. The buffer will finally overflow because the system

is unstable.

• For this transceiver system to work well and the available bandwidth to be

used efficiently, both the encoding and decoding times must be made smaller

that the transmission time.

• This IEEE 802.11a transceiver system will not be able to cope with 20 MHz

IEEE 802.11a signals, and must be made faster.

The results from the IEEEE 802.11a packet encoding and decoding speed tests and

the tests done on hardware platform 2, all come to these same conclusions: The

software is currently not fast enough to cope with full bandwidth (20MHz) IEEE

802.11a signals. Please refer to the final chapter about recommendations on speeding

up the system.

 163

8.4 Conclusions

The IEEE 802.11a based transceiver system was programmed in C++ and

implemented on the hardware platform as shown in the previous chapter. The

software was then put through a series of tests to determine how well it worked. A

series of simulation tests showed that the results from the implemented decoder

indeed followed the theoretically predicted values from Chapter 2. It was also shown

that phase compensation due to sub-sample offset resulting from sampling frequency

drift is essential. The implemented reference carrier phase compensation algorithm

introduced a 1 – 1.2 dB implementation loss due to AWGN. The algorithm also

showed a further 1dB implementation loss when decoding signals effected by

sampling frequency drift. The initial sound device transmissions tests and buffered

real-time test results was very close to the final simulated results which means the

simulations are a very close approximation of the real-life system. Further encoding

and decoding speed tests, have determined that although the current software works

for the (low-speed) low-bandwidth version of the IEEE 802.11a signal, it will not be

able to sustain continuous decoding of the full bandwidth (20 MHz) IEEE 802.11a

signal. The decoder and encoder are just too slow. The following and final chapter in

this thesis concludes everything and has some recommendations on upgrading the

IEEE 802.11a transceiver.

 164

Chapter 9

Conclusions

9.1 Introduction

This thesis describes the implementation of an OFDM transceiver system as part of a

SDR environment. Orthogonal Frequency Division Multiplexing, a subset of

Frequency Division Multiple Access, is a multi-carrier modulation technique that

encodes digital data into closely packed orthogonal sub-carriers. Orthogonality

ensures that there is no interference between the sub-carriers. The overview into

digital modulation techniques shows us how digital data bits can be encoded onto

sinusoidal carrier waves. These techniques form the foundation for multi-carrier

modulation schemes such as OFDM and can be used as reference when comparing the

performance results. OFDM mathematics is studied and expanded into processes

where digital data can be encoded and decoded into and from OFDM data symbols in

a digital domain. The transmission of OFDM symbol trains across communications

channels is prone to many performance-influencing factors. These factors are

identified and methods the overcome them are determined and analysed in detail. The

implementation of the OFDM transceiver system is based on the IEEE 802.11a

standard for encoding and decoding OFDM signals. The IEEE 802.11a standard is

very robust in handling these performance influencing factors and is a very efficient

OFDM implementation. The SDR implementation of the IEEE 802.11a based

transceiver system is done in a programming language called C++. The sound cards

in two personal computers (hardware platforms) are connected together using

standard stereo copper wires. IEEE 802.11a OFDM data is then encoded and

transmitted from the one computer and received and decoded by the other. The

software is put through different simulation and transmission tests influenced by

AWGN and sampling frequency drift to determine the system performance. The final

real-time data performance tests had an approximate 2.2dB implementation loss but

still performed as expected and very close to the final simulated test results.

 165

9.2 The IEEE 802.11a Standard and OFDM Modulation

OFDM modulation is a very attractive digital modulation technique and has its fair

share of advantages and disadvantages. Some of these advantages are:

• OFDM is scalable in frequency and data rates.

• High bandwidth efficiency.

• Does not require channel equalisation.

• Flexible and adaptive; bit loading of different sub-carriers.

• Good at mitigating the effect of narrowband interferences.

• Does not require a phase lock loop.

Some of the disadvantages of OFDM include:

• OFDM is very processor intensive.

• High PAPR problems and dynamic range issues.

• Very sensitive to sampling frequency drift and phase noise.

• Precise OFDM symbol synchronisation is very important.

The IEEE 802.11a OFDM standard was designed for environments such as offices

where office furniture and other objects might cause large multipath delays. High data

rate single-carrier modulation techniques have very short symbol periods that need

considerable channel equalisation when influenced by large multipath delays. OFDM

can obtain the same data rates but will still have relatively long symbol periods. The

long OFDM symbol periods are influenced much less by multipath delays, especially

with the addition of guard intervals. Office environments also generally have many

electronic devices of which some might purposefully and others inadvertently

transmit radio waves within the OFDM signal spectrum. This narrowband interference

will interfere only with a few OFDM sub-carriers, leaving the rest untouched (due to

the orthogonality). Influencing the wideband spectrum of high-data-rate single-carrier

modulation signals will influence the whole signal, and ultimately cause continuous

decoding errors for the duration of the interference. The advantages that IEEE

802.11a OFDM modulation have over other modulation techniques, especially in the

 166

office environment, does however come at a cost. OFDM modulation is quite

processor intensive. For each OFDM data symbol that is decoded a DFT or FFT

transform is needed. OFDM is also very sensitive to sampling frequency drift, which

causes long term de-synchronisation of the OFDM symbol train and phase errors in all

sub-carriers. The IEEE 802.11a OFDM standard utilises so many techniques for

combating all the different performance influencing factors that finally a sizable

percentage of the available bandwidth and time is used to make sure the data quality is

acceptable. The bandwidth efficiency can be calculated as the percentage of data sub-

carriers over the total usable sub-carries,

SD
f

ST

N 48n 0.923 or 92.3%.
N 52

= = = (9.1)

The time signal efficiency can be calculated as the actual data signal time over the

total OFDM signal time,

FFT
t

SYM

T 3.2usn 0.8 or 80%.
T 4.0us

= = = (9.2)

The total efficiency can be calculated as the product of the bandwidth and time signal

efficiencies,

f tn n n 0.8*0.923 0.738 or 73.85%.= ∗ = = (9.3)

This means that the final IEEE 802.11a OFDM system uses 26.15% of its available

time and bandwidth resources just to make sure the decoded signal quality is

acceptable. With the rising cost and scarcity of available bandwidth one can ask

whether IEEE 802.11a should be used at all. On the one hand, IEEE 802.11a utilises a

part of the frequency spectrum called the ISM band, which is an unlicensed band and

free for all to use. By using a part of the frequency spectrum that is free one could

argue that since no one is paying for it, it doesn’t really matter if we waste a small part

of it, if it would ensure a good performance. In such a case the use of IEEE 802.11a in

office environments is a very good choice. On the other hand, it is not in the least

surprising to find that the IEEE 802.11 standards now already include various

 167

upgrades after the IEEE 802.11a standard, such as IEEE 802.11b, IEEE 802.11n and

IEEE 802.11g.

9.3 Software Defined Radio

Software defined radio is a very interesting and noble idea for the future development

of new radio communications devices as well as other types of electronic devices. It is

a fact that with the advances in technology, processors are becoming smaller and

more powerful. This thesis is not however involved in the development of SDR

equipment. The software written for the purpose of this thesis was tested on a personal

computer, which could be seen as a very powerful SDR device, but which is not the

final intended implementation of this system. As to date the SDR group at the

University of Stellenbosch’s electronic engineering faculty is still relatively new, and

a generic hardware platform is not yet ready for use.

9.4 Notes on the C++ software

The C++ software was written to be generic and modular, and to use the most

common C++ functions and libraries so it would be compatible with most of the

existing C++ compilers available for embedded systems. For this reason complex

values used in the different functions where handled as two separate values, one for

the real and the other the imaginary part of the complex value. In other cases, the

magnitude and phase representation of the complex value were used. Furthermore, it

seems that there is still a small problem with the Port Audio sound card interface

software. It seems that there might still be an error in the recording and/or playback

callback functions in the OFDM_audio library. During recording callbacks when the

receiver is receiving and buffering the incoming OFDM transmission, some small

buffer segments get lost or skipped. This causes catastrophic failure in the OFDM

decoding algorithm, since it translates to synchronisation errors larger than what the

decoder is set to handle. The IEEE 802.11a transceiver software works as it is, but

might not be running optimally and a more experienced programmer might be able to

streamline the software and even improve the data performance results.

 168

9.5 SDR Performance Tests

The IEEE 802.11a OFDM transceiver system was tested to determine how well the

software performed in different circumstances. Seven simulations tests tested the

performance of the decoder, by letting it decode artificially influenced OFDM signals.

It was found that the basic decoder with the reference carrier phase compensation

algorithm disabled performed precisely as predicted in the presents of AWGN. The

BER graph followed the theoretically predicted results very closely. The same test,

but with the reference carrier phase compensation enabled, showed a 1 – 1.2dB

implementation loss. This basically means that the noise on the reference carriers

affects the phase compensation and causes extra decoding errors. In the simulation

tests where the OFDM signal was influenced by sampling frequency drift, the

performance results showed another 1dB implementation loss. What this means is that

the reference carrier phase compensation algorithm was unable to completely mitigate

the resulting phase shifts on the sub-carriers. Finally, the initial sound device

transmission test results and the real-time buffered test results are so to say the same

as the final simulation tests. This is very good since it means that our simulations are a

very close approximation of the real-life system. We can now see from the different

simulation tests which part of the transceiver caused the different implementation

losses and could need some extra work. The final IEEE 802.11a OFDM transceiver

performance graphs can be seen in Figures 8.13 and 8.14. The IEEE 802.11a

transceiver system was further tested and put through a series of speed tests. These

tests timed the IEEE 802.11a packet encoding and decoding processes. It was found

that the current software and hardware platform would not be able to continuously

receive and decode full bandwidth (20MHz) IEEE 802.11a packets as intended by the

IEEE 802.11a specifications. The current software is just too slow.

 169

9.6 Future Work and Research

Future work on the IEEE 802.11a OFDM software include:

• Programming and implementing a convolutional encoder and decoder.

• Expanding the sub-carrier modulation software to include BPSK, 16-QAM

and 64-QAM encoders and decoders.

• Improving the reference carrier phase compensation algorithms for better

noise performance and faster operation.

• Optimising and streamlining the existing algorithms.

• Converting the DFT and IDFT function to FFT and IFFT functions to make

the system run faster.

Future work on the IEEE 802.11a OFDM hardware include:

• Using a high bandwidth ADC and DAC instead of the computer sound card to

use the full IEEE 802.11a OFDM bandwidth.

• Replacing the stereo copper cables which act as the communications medium

with a appropriate analogue front-end and antenna.

• Porting the IEEE 802.11a software to an embedded system and creating a

complete IEEE 802.11a transceiver.

Additional tests to be done on the IEEE 802.11a OFDM system

• Testing the multipath effect on the IEEE 802.11a transceiver data performance

after upgrading the hardware with high bandwidth ADC’s DAC’s and

analogue front ends.

• Testing the data performance after the convolutional encoding FEC software is

installed.

9.7 Comparing against other existing OFDM systems.

Due to the lack of an appropriate RF front-end for transmitting and receiving the

IEEE 802.11a OFDM packets over the air, we are unable to test the currently

implemented IEEE 802.11a transceivers’ multipath performance. Multipath fading is

a definite performance-influencing factor for any RF transceiver system.

 170

To get a general idea of how multipath affects RF transceiver systems, the results

from this thesis were compared against simulated results in [26]. In [26] the

performance of an OFDM modulated signal with QPSK sub-carriers as well as a

single-carrier high-speed QPSK signal were simulated over different fading channels.

In one of the simulations the two modulated signals were given extra error correction

capability. The receiver had the ability of correcting 6 bits in each 64-bit packet. Their

performances where simulated over a two-path Rayleigh fading channel. (Basically a

Rayleigh fading channel is a non-line-of-sight channel. In this simulation the two

Rayleigh channels had equal power). The BER performance of the two modulated

signals, each with and without the error correcting ability, together with the results

from our real-time buffered transmission test and simulation test 2 (OFDM QPSK

with no influences) were compared. The resulting graph in Figure 9.1 shows the

relative performances.

Figure 9.1: Implemented IEEE 802.11a transceiver comparison graph

The 12dB difference between our real-time buffered transmission graph and the un-

coded OFDM-QPSK BER graph from [26] shows us just how devastating multipath

effects can be.

 171

Just as interesting is the ability of the error correction to correct faulty bits and to

boost the data quality from a relative 12dB implementation loss to a mere 3dB. The

error correction scheme thus introduced a 9dB coding gain, which is very impressive.

From these results it is clear that multipath and error correction both play big roles in

influencing the performance of RF transmitted signals. They would thus undoubtedly

also influence the performance of our implemented IEEE 802.11a transceiver once it

is fully implemented.

9.8 Conclusions

The IEEE 802.11a OFDM transceiver system build for the purpose of this thesis

works and has an approximate 2.2 dB data performance implementation loss.

9.9 Thanks

I would like to thank the University of Stellenbosch, the Electrical and Electronic

Engineering department, the Digital Signal Processing group, the Software Defined

Radio group, and everyone involved, for giving me the opportunity to work on this

exciting project.

 172

Appendix A

Useful Mathematical Proofs

A.1 Useful Trigonometry Functions:

sin(a b) sin(a) cos(b) cos(a) sin(b)+ = + (A.1)

sin(a b) sin(a) cos(b) cos(a) sin(b)− = − (A.2)

cos(a b) cos(a) cos(b) sin(a)sin(b)+ = − (A.3)

cos(a b) cos(a) cos(b) sin(a)sin(b)− = + (A.4)

 ()()2sin (x) 0.5 1 cos(2x)= − (A.5)

()()2cos (x) 0.5 1 cos(2x)= + (A.6)

A.2 Finding The Zero-points of a Sinc Waveform

A sinc can be expressed as

sin(ft)sinc(ft) .
ft
π⎛= ⎜ π⎝ ⎠

⎞
⎟ (A.7)

The sinc zeroes are found where sin(ft) 0π = , and we know that a sine wave is equal

to zero every 180 degrees or π radians,

sin() 0 where m ; m [,...,0,...,].φ = φ = π ∈ −∞ ∞ (A.8)

If we now substitute the parameters for the sine wave from (A.7) into Equation (A.8)

we get

sin(ft) 0 where ft m ; m [,..., 0,...,].π = π = π ∈ −∞ ∞ (A.9)

 173

This means that the sine wave from Equation (A.7) has zeroes at the following

locations,

msin(ft) 0 where f ; m [,...,0,...,].
t

π = = ∈ −∞ ∞ (A.10)

This means that the sinc waveform (A.7) has zeroes at the same locations as (A.10) so

that

msinc(ft) 0 where f ; m [,...,0,...,].
t

π = = ∈ −∞ ∞ (A.11)

By choosing m=0, t and f becomes zero and (A.11) produces an undefined and

unusable result

sin(0) 0sinc(0) (undefined).
0 0

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (A.12)

(A.12) is solved by applying L’Hospital’s rule to (A.7),

t 0

d sin(ft)
dtsinc(0) lim ,d ft

dt
→

⎛ ⎞π⎜ ⎟
= ⎜

⎜ ⎟π
⎝ ⎠

⎟ (A.13)

which reduces to

()
t 0

sinc(0) lim cos(ft) 1.
→

= π = (A.14)

The value of the sinc function for an integer-valued argument can finally be expressed

as

m 0; where f ; m [1, 2,...,]
sinc(ft) .t

 1; where f 0

⎧ ⎫= ∈ ∞⎪ ⎪= ⎨ ⎬
⎪ ⎪=⎩ ⎭

 (A.15)

 174

A.3 RMS of a sine wave

If a sinusoidal signal is given by y(t) so that

y(t) A cos(2 ft).= ∗ π + φ (A.16)

The Root-Mean-Square (RMS) of (A.16) can be calculated as

T
2

RMS
0

1y (t) y (t)dt .
T

⎛ ⎞
= ⎜

⎝ ⎠
∫ ⎟ (A.17)

Substituting the sinusoidal signal (A.16) into Equation (A.17) gives

T
2 2

RMS
0

1y (t) A cos (2 ft)dt
T

⎛ ⎞
= π⎜

⎝ ⎠
∫ .+ φ ⎟ (A.18)

Substituting the trigonometry function (A.9) into Equation (A.18) yields

T2

RMS
0

Ay (t) 1 cos(4 ft)dt
2T

⎛ ⎞
= + π + φ⎜

⎝ ⎠
∫ .⎟ (A.19)

Equation (A.19) can then be reduced to

T T2 2

RMS
0 0

A Ay (t) 1dt cos(4 ft)dt
2T 2T

⎛ ⎞
= + π + φ⎜ ⎟

⎝ ⎠
∫ ∫ . (A.20)

Equation (A.20) can further be reduced to

[]T2 2
0

RMS

sin(4 ft)A Ay (t)
2 2T 4 f

⎛ ⎞π + φ
⎜ ⎟= +
⎜ ⎟π⎝ ⎠

. (A.21)

 175

This gives

2 2

RMS
A A sin(4 fT)y (t)
2 2T 4 f

⎛ ⎞
.π + φ

= +⎜ π⎝ ⎠
⎟ (A.22)

The integral of the sine wave is zero for all multiples of 2π , thus (A.22) will become

2

RMS
A Ay (t)
2 2

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. (A.23)

 176

Appendix B

Digital Modulation Schemes

B.1 Binary Phase Shift Keying (BPKS) modulation

A BPSK encoder takes one digital data bit (b0) and converts it to one of 2 possible

complex values represented by its I (real) and Q (imaginary) channel value.

Input Bit (b0) I-Out Q-Out

0 -1 0

1 1 0

Table B.1: BPSK encoding table

Figure B.1: BPSK constellation bit

encoding

B.2 Quadrature Phase Shift Keying (QPSK) encoding

A QPSK encoder takes two digital data bits (b0b1) and converts it to one of 4 possible

complex values represented by its, I (real) and Q (imaginary) cannel values.

Input Bit (b0) I-Out

0 -1

1 1

Input Bit (b1) Q-Out

0 -1

1 1

Table B.2: QPSK encoding table

 177

Figure B.2: QPSK constellation bit encoding

B.3 16-Quadrature Amplitude Modulation (16-QAM) encoding

A 16-QAM encoder takes four digital data bits (b0b1b2b3) and converts it to one of 16

possible complex values represented by their I (real) and Q (imaginary) cannel values.

Input Bit (b0b1) I-Out

00 -3

01 -1

10 1

11 3

.

Input Bit (b2b3) Q-Out

00 -3

01 -1

10 1

11 3

Table B.3: 16-QAM encoding table

Figure B.3: 16-QAM constellation bit encoding

 178

B.4 64-Quadrature Amplitude Modulation (QAM-64) encoding

A QAM-64 encoder takes six digital data bits (b0b1b2b3b4b5) and converts it to one of

64 possible complex values represented by their I (real) and Q (imaginary) cannel

values.

Input Bit (b0b1 b2) I-Out

000 -7

001 -5

010 -3

011 -1

100 1

101 3

110 5

111 7

Input Bit (b3b4b5) Q-Out

000 -7

001 -5

010 -3

011 -1

100 1

101 3

110 5

111 7

Table B.4: QAM-64 encoding table

 179

Figure B.4: 64-QAM constellation bit encoding

 180

Appendix C

SDR OFDM Program Details

C.1 The OFDM Specification Structure Details

The OFDM specification structure buffers and variables are shown in Table C.1.

Structure Name OFDM_Specification_struct

Variable

Type

Variable Name Variable Description

Integer Fs The Sampling Frequency value

Integer FcMax The Maximum Usable Frequency

Integer Ntotal Total Amount of Sub-carriers

Integer Nst Total Amount of used Sub-carriers

Integer Nsd Total Amount of Data Sub-carriers

Integer Nsp Total Amount of Reference Sub-carriers

Float DeltaF Sub-Carrier Frequency Spacing

Float Tfft Length of a pre-GI symbol (3.2us)

Float Tgi Guard interval length (0.8us)

Float Tgi2 Guard interval of Long preambles length (1.6us)

Float Tsignal Length of the signal symbol

Float Tlongpreamble Length of the long preamble (8us)

Float Tshortpreamble Length of the short preamble (8us)

Integer Nfft Amount of samples in a OFDM symbol

Integer Ngi Amount of samples in a symbol guard interval

Integer Ngi2 Amount of samples in a long preamble GI

Integer Nsignal Amount of samples in a OFDM symbol with its GI

Integer Nlongpreamble Amount of samples in long preamble

Integer Nshortpreamble Amount of samples in a short preamble

Integer BitsPerSubCarrier Amount of bits encoded in each OFDM sub-carrier

 181

_

Structure Name OFDM_Specification_struct

Variable

Type

Variable Name Variable Description

Integer *pDataCarrier

Positions

Pointer to an array that stores the positions of the

data sub-carriers in an OFDM symbol

Integer *pRefCarrier

Positions

Pointer to an array that stores the positions of the

reference sub-carriers in an OFDM symbol

Float *pDataAndRef

PhaseValues

Pointer to an array the stores the phase values of

the data and reference sub-carriers

Float *pDataAndRef

MagnValues

Pointer to an array that stores the magnitude values

of the data and reference sub-carriers

Float *pDataAndRef

RealValues

Pointer to an array that stores the real values of the

data and reference sub-carriers

Float *pDataAndRef

ImagValues

Pointer to an array that stores the imaginary values

of the data and reference sub-carriers

Float Construction

Magnitude

The standard magnitude value of all the data and

reference sub-carriers

Float *pRefRealValues Pointer to an array that stores the real values of the

reference sub-carriers

Float *pRefImagValues Pointer to an array that stores the imaginary values

of the reference sub-carriers

Float *pLongPreamble

ImagPosValues

Pointer to an array that stores the imaginary

positive frequency values for the long preamble

Float *pLongPreamble

ImagNegValues

Pointer to an array that stores the imaginary

negative frequency values for the long preamble

Float *pLongPreamble

RealPosValues

Pointer to an array that stores the real positive

frequency values for the long preamble

Float *pLongPreamble

RealNegValues

Pointer to an array that stores the real negative

frequency values for the long preamble

Float LongPreamble

Multiplier

A long preamble amplitude multiplier

(Debugging)

 182

_

Structure Name OFDM_Specification_struct

Variable

Type

Variable Name Variable Description

Float MyLongPreamble

Multiplier

Another long preamble amplitude multiplier

(Debugging)

Float *pLongPreamble

RealTimeArray

Pointer to an array that stores the real time domain

part of the long preamble

Float *pLongPreamble

ImagTimeArray

Pointer to an array that stores the imaginary time

domain part of the long preamble

Float *pShortPreamble

ImagPosValues

Pointer to an array that stores the imaginary

positive frequency values for the short preamble

Float *pShortPreamble

ImagNegValues

Pointer to an array that stores the imaginary

negative frequency values for the short preamble

Float *pShortPreamble

RealPosValues

Pointer to an array that stores the real positive

frequency values for the short preamble

Float *pShortPreamble

RealNegValues

Pointer to an array that stores the real negative

frequency values for the short preamble

Float ShortPreamble

Multiplier

A short preamble amplitude multiplier

(Debugging)

Float MyShortPreamble

Multiplier

Another short preamble amplitude multiplier

(Debugging)

Float *pTempShortPream

bleRealTimeArray

Pointer to an array that temporarily stores the real

time domain part of the short preamble

Float *pTempShortPream

bleImagTimeArray

Pointer to an array that temporarily stores the

imaginary time domain part of the short preamble

Float *pShortPreamble

RealTimeArray

Pointer to an array that stores the real time domain

part of the short preamble

Float *pShortPreamble

ImagTimeArray

Pointer to an array that stores the imaginary time

domain part of the short preamble

Float *pLongPreamble

GIRealTimeArray

Pointer to an array that stores the guard interval of

the real time domain part of the long preamble

 183

_

Structure Name OFDM_Specification_struct

Variable

Type

Variable Name Variable Description

Float *pLongPreamble

GIImagTimeArray

Pointer to an array that stores the guard interval of

the imaginary time domain of the long preamble

Float *pSignalRealTime

Array

Pointer to an array that stores the real time domain

part of the signal symbol

Float *pSignalImagTime

Array

Pointer to an array that stores the imaginary time

domain part of the signal symbol

Float *pSignalRealGITi

meArray

Pointer to an array that stores the real time domain

part of the signal symbol guard interval

Float *pSignalImagGITi

meArray

Pointer to an array that stores the imaginary time

domain part of the signal symbol guard interval

Float *pSignalwithGIRea

lTimeArray

Pointer to an array that stores the real time domain

part of the signal symbol with its guard interval

Float *pSignalwithGIIma

gTimeArray

Pointer to an array that stores the imaginary time

domain of the signal symbol guard interval with its

guard interval

Float *pLongPreamble1

Magn;

Pointer to an array that stores the first received

long preamble frequency spectrum magnitudes

Float *pLongPreamble2

Magn;

Pointer to an array that stores the second received

long preamble frequency spectrum magnitudes

Float *pLongPreambleM

eanMagn;

Pointer to an array that stores the mean received

long preamble frequency spectrum magnitudes

Float *pInverseChannelF

ilter;

Pointer to an array that stores the inverse channel

transfer function filter, estimated from the long

preamble frequency spectrum magnitudes

Long

double

**DFT_Wreal Pointer to a matrix of real value twiddle factors for

the DFT function

Long

double

**DFT_Wimag Pointer to a matrix of imaginary value twiddle

factors for the DFT function

 184

_

Structure Name OFDM_Specification_struct

Variable

Type

Variable Name Variable Description

Long

double

** IDFT_Wimag Pointer to a matrix of imaginary value twiddle

factors for the IDFT function

Float *pRealTimeArray Pointer to an array that stores the real time domain

signal for use by the DFT/IDFT function

Float *pImagTimeArray Pointer to an array that stores the imaginary time

domain signal for use by the DFT/IDFT function

Float *pRealFreqArray Pointer to an array that stores the real frequency

spectrum for use by the DFT/IDFT function

Float *pImagFreqArray Pointer to an array of the imaginary frequency

spectrum for use by the DFT/IDFT function

Float *pMagnFreqArray Pointer to an array of magnitude frequency

spectrum for use by the DFT/IDFT function

Float *pPhaseFreqArray Pointer to an array of the phase frequency

spectrum for use by the DFT/IDFT function

Int Is_OFDM_Specs_I

nitiated

Equal 1 if the OFDM specification structure has

been initiated

Table C.1: The OFDM Specification Structure Details

C. 2 The OFDM Transmitter Structure Details

The OFDM transmitter structure buffers and variables are shown in Table C.2.

Structure Name OFDM_Transmitter_struct

Variable

Type

Variable

Name

Variable Description

Boolean TransmitImage Is true if we are going to transmit an image

Boolean TransmitData Is true if we are going to transmit a test data

 185

_

Structure Name OFDM_Transmitter_struct

Variable

Type

Variable Name Variable Description

Boolean TransmitImageIs

Loaded

Is true if the transmit image is already loaded

Boolean TransitDataIs

Loaded

Is true if the transmit test data packet is already

loaded

Integer TotalBytes Stores the amount of bytes in the transmission

Integer TotalBits Stores the amount of bits in the transmission

Integer TotalSymbols Stores the amount of IEEE 802.11a OFDM data

symbols in the transmission

Integer TotalBitsPer

Symbol

Stores the amount of bits we encode per OFDM

data symbol

Byte *pImageBytes Pointer to an array that stores the transmission

bytes

Byte *PimageBits Pointer to an array that stores the transmission bits

Integer Entire_Transmissio

n_Length

Stores the entire transmission sample length

Float *pEntire_Transmiss

ion_I

Pointer to an array that stores the entire

transmission real (I-channel) samples

Float *pEntire_Transmiss

ion_Q

Pointer to an array that stores the entire

transmission imaginary (Q-channel) samples

Float *pSymbol_I Pointer to an array that stores a temporary OFDM

symbol (I-channel)

Float *pSymbol_Q Pointer to an array that stores a temporary OFDM

symbol (Q-channel)

Ansi

String

TransmitFilename The Filename of the file that contains the data we

want to transfer

Boolean GotTransmit

Filename

True if the GUI retrieved a valid filename

char TransmitFilename

Char[1024]

Array of chars that stores the filename

 186

_

Structure Name OFDM_Transmitter_struct

Variable

Type

Variable Name Variable Description

char *prtTransmitFile

CharStr

Pointer to the character string that stores the

transmit filename

Float SNR The Signal-to-noise ratio of the AWGN to be

added to the transmission

Float Vratio The linear ratio of signal to noise of the AWGN

Bool Is_Noise_Added True if AWGN has been added to the signal

Bool Is_OFDM_Transmi

tter_Initiated

True if the OFDM transmitter structure has been

initiated

Bool Is_OFDM_Output_

Data_Initiated

True if the transmission data has been loaded

Bool Is_OFDM_Encodin

g_Complete

True if the OFDM encoding is complete

Table C.2: The OFDM Transmitter Structure Details

C. 3 The OFDM Receiver Structure Details

The OFDM receiver structure buffers and variables are shown in Table C.3.

Structure Name OFDM_Receiver_struct

Variable

Type

Variable Name Variable Description

Boolean TransmitImage Is true if we are going to receive an image

Boolean TransmitData Is true if we are going to receive a test data

Integer ReceiveBufferTime

Length

The receiving buffer length in seconds

Integer TotalBytes The amount of bytes we expect to receive

Integer TotalBits The amount of bits we expect to receive

 187

_

 Structure Name OFDM_Receiver_struct

Variable

Type

Variable Name Variable Description

Integer TotalSymbols The total amount of IEEE 802.11a OFDM data

symbols to expect in the transmission

Integer TotalBitsPer

Symbol

The total amount of bits that can be encoded into

one of out IEEE 802.11a OFDM data symbols

Integer Entire_Trans

mission_Length

The Length in samples of the Entire transmission

array

Float *pEntire_Transmiss

ion_I

Pointer to an array that stores the samples of the

receiving transmission (I-channel)

Float *pEntire_Transmiss

ion_Q

Pointer to an array that stores the samples of the

receiving transmission (Q-channel)

Integer ET_Poll_Loc The position in the transmission we are polling

during the decoding cycle

Integer KeepIndex The Index number from which point we want to

save the rest of the primary buffer at the next entire

transmission array polling

Integer PrimBufferSize The length of the primary decoding buffer

Float *pPrimBuffer_I Pointer to the primary decoding array (I-channel)

Float *pPrimBuffer_Q Pointer to the primary decoding array (Q-channel)

Integer AmountOfTimesIn

State1

Stores the amount of times the decoding state

machine was in state 1

Integer AmountOfTimesIn

State2

Stores the amount of times the decoding state

machine was in state 2

Integer AmountOfTimesIn

State3

Stores the amount of times the decoding state

machine was in state 3

Integer AmountOfTimesIn

State4

Stores the amount of times the decoding state

machine was in state 4

Ansi

String

ReceiveFilename Stores the name of the file that contains the

receiving signal

 188

_

 Structure Name OFDM_Receiver_struct

Variable

Type

Variable Name Variable Description

Boolean GotReceive

Filename

True if the demo GUI successfully retrieved the

filename of the receiving file

Char ReceiveFilename

Char[1024

Array of chars containing the receive filename

Char *ptrReceiveFile

CharStr

Pointer to the array that stores the filename of the

receiving filename

Boolean ReceiveFileIsA

DataFile

True if the file we want to load is a data file

Boolean ReceiveFileIsA

WaveFil

True if the file we want to load is a wave file

Integer State The decoder state machine current state

Boolean StopFileDecoder True if we want to stop the decoder state machine

Integer TimeInLastState The amount of times spent in the previous state

Float State1_Threshold State 1 signal level threshold

Integer Threshold_

Location

State 1 threshold exceeded locations

Float *SP10_xcorr_

Results_I

Pointer to array that stores the result of the cross

correlation of the receiving primary buffer and the

10 short preambles (I-channel)

Float *SP10_xcorr_Resul

ts_Q

Pointer to array that stores the result of the cross

correlation of the receiving primary buffer and the

10 short preambles (Q-channel)

Float *LP2_xcorr_

Results_I

Pointer to array that stores the result of the cross

correlation of the receiving primary buffer and the

2 long preambles (I-channel)

Float *LP2_xcorr_

Results_Q

Pointer to array that stores the result of the cross

correlation of the receiving primary buffer and the

2 long preambles (Q-channel)

 189

_

 Structure Name OFDM_Receiver_struct

Variable

Type

Variable Name Variable Description

Float *SP10_LP2_

xcorr_Results_I

Pointer to array that stores the result of the cross

correlation of the receiving primary buffer and the

10 short and 2 long preambles (I-channel)

float *SP10_LP2_

xcorr_Results_Q

Pointer to array that stores the result of the cross

correlation of the receiving primary buffer and the

10 short and 2 long preambles (Q-channel)

Integer SP10_xcorr_Result

s_Length

Sample length of the SP10_xcorr_Results

 (I and Q –channel)

Integer LP2_xcorr_Results

_Length

Sample length of the LP2_xcorr_Results

 (I and Q –channel)

Integer SP10_LP2_xcorr_R

esults_Length

Sample length of the SP10_LP2_xcorr_Results

 (I and Q –channel)

Float *SP10_I Pointer to array that stores 10 short preambles

(I-channel)

Float *SP10_Q Pointer to array that stores 10 short preambles

(Q-channel)

Float *LP2_I Pointer to array that stores 2 long preambles

(I-channel)

Float *LP2_Q Pointer to array that stores 2 long preambles

(Q-channel)

Float *SP10_LP2_I Pointer to array that stores 10 short and 2 long

preambles (I-channel)

Float *SP10_LP2_Q Pointer to array that stores 10 short and 2 long

preambles (Q-channel)

Float SP10_I_xcorr_

best_value

Stores the value of the peak in the 10 short

preamble cross correlation result (I-channel)

Integer SP10_I_xcorr_best

_index

Stores the location of the peak in the 10 short

preamble cross correlation result (I-channel)

 190

_

 Structure Name OFDM_Receiver_struct

Variable

Type

Variable Name Variable Description

Float SP10_Q_xcorr_

best_value

Stores the value of the peak in the 10 short

preamble cross correlation result (Q-channel)

Integer SP10_Q_xcorr_

best_index

Stores the location of the peak in the 10 short

preamble cross correlation result (Q-channel)

Float LP2_I_xcorr_

best_value

Stores the value of the peak in the 2 long preamble

cross correlation result (I-channel)

Integer LP2_I_xcorr_

best_index

Stores the location of the peak in the 2 long

preamble cross correlation result (I-channel)

Float LP2_Q_xcorr_

best_value

Stores the value of the peak in the 2 long preamble

cross correlation result (Q-channel)

Integer LP2_Q_xcorr_

best_index

Stores the location of the peak in the 2 long

preamble cross correlation result (Q-channel)

Float SP10_LP2_I_xcorr

_best_value

Stores the value of the peak in the 10 short and 2

long preamble cross correlation result (I-channel)

Integer SP10_LP2_I_xcorr

_best_index

Stores the location of the peak in the 10 short and 2

long preamble cross correlation result (I-channel)

Float SP10_LP2_Q_xcor

r_best_value

Stores the value of the peak in the 10 short and 2

long preamble cross correlation result (Q-channel)

Integer SP10_LP2_Q_xcor

r_best_index

Stores the location of the peak in the 10 short and 2

long preamble cross correlation result (Q-channel)

Integer SP_Pos The location of the short preamble

Integer LP1_Pos The location of the first long preamble

Integer LP2_Pos The location of the second long preamble

Integer Signal_Pos The location of the signal symbol

Integer NextDataSymbol_

Pos

The location of the next data symbol

Integer Data_Phases_In_

S_Locs_Neg[24]

Negative frequency spectrum locations of the data

phases in OFDM symbols

 191

_

 Structure Name OFDM_Receiver_struct

Variable

Type

Variable Name Variable Description

Integer Data_Phases_In_

S_Locs_Pos[24];

Positive frequency spectrum locations of the data

phases in OFDM symbols

Integer Data_Phases_In_

CPP_Locs_Neg[24]

Negative frequency spectrum locations in an C++

array of the data phases in OFDM symbols

Integer Data_Phases_In_

CPP_Locs_Pos[24]

Positve frequency spectrum locations in an C++

array of the data phases in OFDM symbols

Byte *ReceivedBytes Pointer to an array of the decoded data bytes

Integer NextReceived

ByteIndex

Index to the location of the next data byte in the

*ReceivedBytes array

Byte *ReceivedBits Pointer to an array of the decoded data bits

Integer NextReceiveBit

Index

Index to the location of the next data bit in the

*ReceivedBites array

Float *NoRecord Pointer to a array that stores each sub-sample offset

during the decoding process

Integer SymbolsReceived Stores the amount of decoded OFDM data symbols

Integer DecodingComplete Equals 1 if decoding is complete

Integer *CarrierBitErrors; Pointer to an array that stores the amount of bits

errors in each sub-carriers

Integer LastSymbol

BeforeAdjustment

The Symbol number of the last time we did a

sample shift adjustment

Integer NoGradient Estimated gradient of the sub-sample offset change

Boolean GotNoGradient True when a valid gradient has been estimated

Boolean RefCarrierPhase

Comp

True when Reference Carrier Phase Compensation

has been enabled

Boolean Is_OFDM_

Receiver_Initiated

True when the OFDM receiver structure has been

initiated

Table C.3: The OFDM Receiver Structure Details

 192

C. 4 The OFDM Comparer Structure Details

The OFDM comparer structure buffers and variables are shown in Table C.4.

 Structure Name OFDM_Comparer_struct

Variable

Type

Variable Name Variable Description

Char *ptrCompare

FileCharStr

Pointer to an array of chars that store the compare

filename

Char CompareFilename

Char[1024];

Array of chars that store the compare filename

Ansi

String

CompareFilename The compare filename

Boolean GotCompare

Filename

True when the GUI successfully retrieved the

compare filename

Boolean CompareFileIs

Image

True if the compare file is an image

Boolean CompareFileIsData True if the compare file is an data file

Boolean CompareFile

Loaded

True if the compare file a has been loaded

Byte *pCompareBytes Pointer to an array that stores all the comparative

bytes

Byte *pCompareBits Pointer to an array that stores all the comparative

bits

Integer TotalBits Total amount of bits that was compared

Integer TotalErrorBits Total amount of incorrect compare bits

Float BER Bit Error Rate of received data

Table C.4: The OFDM Comparer Structure Details

 193

C. 5 The OFDM Audio Structure Details

The OFDM audio structure buffers and variables are shown in Table C.5.

 Structure Name OFDM_Audio_struct

Variable

Type

Variable Name Variable Description

Boolean AudioInited True if sound device has been initiated

Boolean AudioPortInit

ErrorFound

True if AudioPort external library has an error

Integer AudioPortDevices Amount of available sound devices detected

Integer SelectedAudioPort

Device

Currently selected audio device

Const PaDeviceInfo [*AudioPortDeviceIndo] Selected device info

linked to outside library

Boolean Is_OFDM_Audio_

Initiated;

True if OFDM audio structure has been initiated

Boolean Is_OFDM_Audio_

Device_Selected

True if a sound device has been selected

Boolean Is_OFDM_Audio_

Ready_To_Start;

True is audio is ready!

Table C.5: The OFDM Audio Structure Details

 194

C. 6 The Main OFDM Library Functions

The main OFDM library functions are shown in Table C.6.

Library Name OFDM

Function Name Function Description

OFDM_WF(.) Writes a float array to file (debugging only)

OFDM_Initiate_

Specifications()

Initiated OFDM specifications buffer

Clean_CleanAllTimeBuffers() Clean the DFT/IDFT time buffers

Clean_CleanAllFreqBuffers() Clean the DFT/IDFT frequency buffers

OFDM_Initiate_All() Calls initiation sub-functions

DFT_IDFT() The IDFT function

DFT_DFT() The DFT function

FFT_Convert_RealAndImag_

To_MagnAndPhase()

Convert the real and imaginary frequency

spectrum into magnitude and phase values

FFT_Create_Twiddle_Factors() Create the DFT/IDFT twiddle factors

OFDM_Create_Long_Preamble() Creates the IEEE 802.11a long preamble

OFDM_Create_Long_

Preamble_GI()

Creates the IEEE 802.11a long preamble guard

interval

OFDM_Create_Short_Preamble() Creates the IEEE 802.11a short preamble

Table C.6: The main OFDM library functions

C. 7 The OFDM Math Library Functions

The OFDM math library functions are shown in Table C.7.

Library Name OFDM_math

Function Name Function Description

Math_CrossCorrelation() Calculates the cross correlation between two input

float-type buffers

 195

_

Library Name OFDM_math

Function Name Function Description

Math_MaxBufferValue() Returns the maximum value inside a float-type array

Math_MaxBufferIndex() Returns the index of the maximum value inside a

float-type array

Math_MinBufferValue() Returns the minimum value inside a float-type array

Math_MinBufferIndex() Returns the index of the minimum value inside a

float-type array

Math_RMSBufferValue() Returns the Root-Mean-Square (RMS) value of a

float-type array

Math_QPSK_PhaseTo2Bits() Demodulates a QPSK phase into 2 bits

Math_QPSK_PhaseTo2Bits

Array()

Demodulates an array of QPSK phases into a array

of bits

Math_BitToInt() Converts a 8-bit binary array into an integer value

Math_BitStreamToByteStrea

m()

Converts a 8-bit binary array stream into a integer

array

Math_QPSK_2BitsToPhase() Modulates 2 bits into a QPSK phase

Math_QPSK_2BitToPhase

Array()

Modulates an array of bits into an array pg QPSK

phases

Math_IntToBit() Converts a integer value into a 8-bit binary array

Math_IntToCustomBit() Converts a integer value into a N-bit binary array

Math_Round() Rounds a float value into an integer

Math_Reverse_Array() Returns the inverse of the input float-type array

Conjugate_Array() Returns the negative of the input float-type array

Math_FloatTo2Byte() Convert a 16-bit float-type value into 2 bytes

Math_2ByteToFloat() Convert 2 bytes into a 16-bit float-type value

Math_AbsFloat() Returns the absolute of a float-type value

Math_Phase2Quad Returns the quadrant the input phase is located in.

Math_AmountOfDifferences

InArrays()

Returns the amount of differences between two

Integer-type arrays

Math_DistanceToZero() Unwraps and calculates the distance from the input

phase to zero

 196

_

Library Name OFDM_math

Function Name Function Description

Math_DistanceTo180() Unwraps and calculates the distance from the input

phase to 180 degrees

Table C.7: The OFDM Math library functions

C. 8 The OFDM Transmitter Library Functions

The OFDM transmitter library functions are shown in Table C.8.

Library Name OFDM_transmitter

Function Name Function Description

OFDM_Transmitter_Init_

Image_Transmitter

Initiates the OFDM transmitter structure for the

transmission of an test image file

OFDM_Transmitter_Init_

Data_Transmitter

Initiates the OFDM transmitter structure for the

transmission of a test data packet

OFDM_Transmitter_

GetTransmitFilename

Retrieve the transmitter filename using a file dialog

box

OFDM_Transmitter_Load_

Transmit_File

Load the transmitter file

OFDM_Transmitter_Add_Pre

ambles

Adds the IEEE 802.11a preambles to the

transmission buffer

OFDM_Transmitter_DataPha

ses_To_Complete_Symbol

A function that converts data phases into complete

IEEE 802.11a OFDM data symbols

OFDM_Transmitter_Add_

Signal

Adds the IEEE 802.11a signal symbol to the

transmission buffer

OFDM_Transmitter_Encode Encodes the transmission data into IEEE 802.11a

OFDM data symbols

OFDM_Transmitter_Add_

Data

Adds the encoded OFDM data symbols to the

transmission buffer

 197

_

Library Name OFDM_transmitter

Function Name Function Description

OFDM_Transmitter_Save_Tr

ansmission_To_Custom_File

Saves the transmission buffer to a local file

OFDM_Transmitter_Add_Noi

se

Adds AWGN to the transmission buffer

Table C.8: The OFDM Transmitter library functions

C. 9 The OFDM Receiver Library Functions

The OFDM receiver library functions are shown in Table C.9.

Library Name OFDM_receiver

Function Name Function Description

Receiver_WB Writes a Byte-type buffer to file (debugging)

Receiver_WF Writes a float-type buffer to file (debugging)

OFDM_Receiver_UpdateIma

ge

Updates the received and decoded image on the GUI

OFDM_Receiver_Init_Setup_

Variables

Receiver structure initialisations: Setup all the

variables used in the receiver

OFDM_Receiver_Init_Create

_Buffers

Receiver structure initialisations: Create all the

buffers used in the receiver

OFDM_Receiver_Init_Clear_

Buffers

Receiver structure initialisations: Clear all the

buffers used in the receiver

OFDM_Receiver_Init_Fill_B

uffers

Receiver structure initialisations: Fill all the buffers

used in the receiver

OFDM_Receiver_Init_Image

_Receiver

Receiver structure initialisations: Initialise the

receiver to receive test images

OFDM_Receiver_Init_Data_

Receiver

Receiver structure initialisations: Initialise the

receiver to receive test data packets

 198

_

Library Name OFDM_receiver

Function Name Function Description

OFDM_Receiver_State3 OFDM decoder state machine state 3 (Information

extraction from long preamble and signal symbol)

OFDM_Receiver_State2 OFDM decoder state machine state 2

(Initial OFDM symbol synchronisation)

OFDM_Receiver_State1 OFDM decoder state machine state 1

(Signal threshold detector)

OFDM_Receiver_Create_

Freq_Shifts

Create phase shifts from different sub-sample

offsets

OFDM_Receiver_Add_

Freq_Shifts

Add the received reference carriers to the phase

shifts

OFDM_Receiver_

Reference_Freq_Shifts

Reference all the sub-sample influenced phases to

zero degrees

OFDM_Receiver_Calc_

Smallest_Distances

Determine which sub-sample influenced phase

performs the best and returns the result

OFDM_Receiver_Calculate_

SubSample_Offset

Container function which calculates the best sub-

sample offset for a given reference carriers and

sub-sample offset range

OFDM_Receiver_State4 OFDM decoder state machine state 4

(Data Symbol Decoding)

OFDM_Receiver_Decode_

Buffer

OFDM decoder state machine

OFDM_Receiver_

GetReceiveFilename

Function which returns the receiver file filename

using a file dialog box in the demo GUI

OFDM_Receiver_LoadTransmi

ssion_From_CustomFile

Loads the transmission data from a custom data file

OFDM_Receiver_LoadTransmi

ssionSize_From_CustomFile

Loads the transmission data size from a custom

data file

 199

_

Library Name OFDM_receiver

Function Name Function Description

OFDM_Receiver_LoadTrans

mission_From_WaveFile

Loads the transmission data from a wave file

OFDM_Receiver_LoadTrans

missionSize_From_WaveFile

Loads the transmission data size from a wave file

OFDM_Receiver_Start_

Decode_From_File

Container function, starts the OFDM decoding

after data has been loaded from file

OFDM_Receiver_Start_

Decode_From_SoundBuffer

Container function, starts the OFDM decoding

after data has been received from the sound device

Table C.9: The OFDM Receiver library functions

C.10 The OFDM Comparer Library Functions

The OFDM comparer library functions are shown in Table C.10.

Library Name OFDM_comparer

Function Name Function Description

OFDM_Comparer_Get

CompareFilename

Retrieves the comparative filename using a file

dialog box in the demo GUI

OFDM_Comparer_Load_

Data_File

Loads the comparative data if it’s a test data packet

OFDM_Comparer_Load

CompareFile

Loads the comparative data if it’s a test image

OFDM_Comparer_Compare Compare the received data to the comparative data

Table C.10: The OFDM Comparer library functions

 200

C.11 The OFDM Audio Library Functions

The OFDM audio library functions are shown in Table C.11.

Library Name OFDM_audio

Function Name Function Description

Audio_Initiate_Audio Initiates the OFDM audio structure and audio

device

Audio_Change_Audio_Device_

With_ComboBox

Change the currently selected audio device using

the combo box on the GUI

Audio_Data_

Transmission_Callback

Callback function which transmits signals over the

sound device

Audio_Play_Transmission Container function which plays back transmissions

over the sound device

Audio_Play_Calibration Transmits full volume sine wave to calibrate the

volume controls

Audio_Data_Record_Callback Callback function which records signals from the

sound device

Audio_Record_Calibration Records the calibration signals and calls the

evaluations function

Audio_Record_Calibration_

Evaluation

Evaluates the received calibration signal

Audio_Record_Transmission Records incoming data transmissions

Table C.11: The OFDM Audio library functions

 201

Appendix D

SDR OFDM Included CD

D.1 SDR OFDM Included CD

The CD included with this thesis contains the following:

• The complete IEEE 802.11a transceiver C++ source code.

• The complete IEEE 802.11a GUI Demo program.

• Some Matlab OFDM debugging programs.

• All the test images used in the performance testing.

• All the test data packets used in the performance testing.

• This thesis.

• The IEEE 802.11a specifications.

• Other useful OFDM related documentation.

 202

Bibliography

[1] IEEE Std 802.11a-1999 (supplement to IEEE Std 802.11a-1999, “Part 11:

Wireless LAN medium access control (MAC) and physical layer PHY

specifications: High speed physical layer in 5 GHz band,” temp. rep., IEEE,

Sept. 1999.

[2] Jung-yeol Oh, Jae-sang Cha, Seong-kweon Kim and Myoung-seob Lim.

“Implementation of Orthogonal Frequency Division Multiplexing Modem

Using Radix-N Pipeline Fast Fourier Transform (FFT) Processor,” Jpn. J.

Appl. Phys. Vol.42 (2003) pp.1-6 Part 1, No 4B, April 2003.

[3] Guillermo Acosta. “OFDM Simulations Using Matlab,” Smart Antenna

Research Laboratory report, August 2000.

[4] Yun Chiu, Dejan Markovic, Haiyun Tang and Ning Zhang. “OFDM

Receiver Design,” EE225C, Final Report, 12 December 2000

[5] Dr. Jean. Armstrong. “OFDM – Orthogonal Frequency Division

Multiplexing,” presentation notes, Department of Electronic Engineering,

La Trobe University.

[6] Greg DesBrisay. “Basics of Orthogonal Frequency Division Multiplexing,”

presentation notes, Cisco Systems, Inc., 2000

[7] V. Moeyaert, P. Megret, J. Friodure, L. Robette and M. Blondel.

“Analytical formulation of the error probability of a QPSK transmission

impaired by the joint action of gaussian and impulse noises,” Service

d’Electromagnetisme & Telecommunications, Faculte Polytechnique de

Mons, MULTITEL,

[8] John. G. Proakis, Masoud Salehi. “Communications Systems Engineering,”

Prentice Hall, 1994

[9] Seymour Stein, J. Jay. Jones. “Modern communications principles, with

application to digital signalling,” McGraw-Hill, 1967

[10] Peyton Z. Peebles, JR. “Probability, Random Variables and Random Signal

Principles,” Third Edition, McGraw-Hill International Editions, 1993

[11] R. E. Ziemer, W.H. Tranter. “Principles of Communications, Systems,

Modulation, and Noise,” Fourth Edition, John Wiley & Sons, Inc., 1995

 203

 Bibliography

[12] J.J. van de Beek, P. Odling, S.K. Wilson, P.O. Borjesson. “Orthogonal

Frequency-Division Multiplexing (OFDM),” The Internation Union of

Radio Science (URSI), Lulea University of Technology, 2002

[13] Dr. R. Wolhuter. Class notes from the Telecommunications 823

postgraduate coarse, Department of Electrical and Electronic Engineering,

University of Stellenbosch.

[14] Edward Snyder. “Convolutional Encoding,” Apogee Labs, Inc.

[15] Haiyun Tang, Kan Y. Lau, and Robert W. Brodersen. “Synchronisation

Schemes for Packet OFDM Systems,” Berkeley Wireless Research Centre

[16] V. S. Abhayawardhana, I. J. Wassell. “Residual Frequency Offset

Correction for Coherently Modulated OFDM Systems in Wireless

Communication,” Laboratory for Communications Engineering,

Department of Engineering, Universisty of Cambridge

[17] Jan-Jaap van de Beek, Per Ola Borjesson, Marie-Laure Boucheret, Daniel

Landstrom, Julia Martinez Arenas, Per Odling, Christer Ostberg, Mattias

Wahlqvist and Sarah Kate Wilson. “A Time and Frequency Synchronisation

Scheme for Multiuser OFDM,” IEEE Journal on Selected Areas in

Communications, Vol. 17, No, 11, November 1999

[18] Suhas N. Diggavi. “On achievable performance of spatial diversity fading

channels,” AT&T Shannon Laboratories, New Jersey, USA

[19] A.D.S Jayalath and C. Tellambura. “Peak-to-Average Power ratio of IEEE

802.11a PHY layer Signals,” School of Computer Science and Software

Engineering, Monash University.

[20] Curt Schurgers and Mani. B. Srivastava. “A Systematic Approach to Peak-

Average Power Ratio in OFDM,” Electrical Engineering Department,

University of California at Los Angeles.

[21] Lawrey, E., Kikkert, C.J., “Peak to average power ratio reduction of OFDM

signals using peak reduction carriers,” Fifth International Symposium on

Signal Processing and its Applications, ISSPA, August 1999

 204

 Bibliography

[22] Yngvar Larsen, Geert Leus and Georgios B. Giannakis. “Reduction of

Peak-To-Average Power Ratio In Block Differential OFDM Systems,”

Dept. of Pysics, University of Tromso, Norway.

[23] Sinem Coleri, Mustafa Ergen, Anuj Puri and Ahmad Bahai. “A Study of

Channel Estimation in OFDM Systems,” University of California, Berkeley.

[24] L. Vandendorpe, B. Devillers, J. Duplicy, J. Louveaux. “ OFDM:

Orthogonal Frequency Division Multiplexing,” Communications and

Remote Sensing Lab, Universite Catholique de Louvain, Belgium.

[25] Markku Juntti and Juha Ylitalo. “Spatial Multiplexing,” Tutorial – Mimo

Communications with Applications to (B)3G and 4G Systems, University

of OULU.

[26] Marius Oltean, Andy Vesa, Eugen Marza. “Performance Evaluation of

Single-Carrier Broadband Transmission with Frequency Domain

Equalizers,” Transactions of Electronics and Communications, Buletinul

Ştiinţific al Universitǎţii “Politehnica” din Timişoara, Tom 49(63),

Fascicola 1-2, 2004.

 205

	Christoph Sonntag
	Of the requirements for the degree of
	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Glossary
	List of Figures
	List of Tables
	Chapter 1
	Chapter 1: Introduction
	Chapter 2: An Overview of Digital Modulation Techniques and Frequency Division Multiplexing
	Chapter 3: OFDM Mathematics
	Chapter 4: Encoding and Decoding OFDM Data Symbols
	Chapter 5: Identifying and Overcoming OFDM System Performance Influences
	Chapter 6: IEEE 802.11a OFDM Standard
	Chapter 7: SDR Implementation of an IEEE 802.11a OFDM System
	Chapter 8: OFDM System Performance Tests and Results
	Chapter 9: Conclusions
	Appendix
	Chapter 2
	An Overview of Digital Modulation
	Chapter 3
	OFDM Mathematics
	Chapter 4
	Encoding and decoding OFDM data symbols
	Chapter 5
	Identifying and Overcoming OFDM System Performance Influences
	Chapter 6
	IEEE 802.11a OFDM standard

	A.2 Finding The Zero-points of a Sinc Waveform
	Appendix B

	B.1 Binary Phase Shift Keying (BPKS) modulation
	B.2 Quadrature Phase Shift Keying (QPSK) encoding
	
	Table B.2: QPSK encoding table
	B.3 16-Quadrature Amplitude Modulation (16-QAM) encoding
	B.4 64-Quadrature Amplitude Modulation (QAM-64) encoding
	Appendix C

	C.1 The OFDM Specification Structure Details
	Structure Name
	Variable Description
	Structure Name
	Variable Description
	Structure Name
	Variable Description
	Structure Name
	Variable Description
	Structure Name
	Variable Description
	Structure Name
	Variable Description
	Structure Name
	Variable Description
	Structure Name
	Variable Description
	Structure Name
	Variable Description
	 Structure Name
	Variable Description
	 Structure Name
	Variable Description
	 Structure Name
	Variable Description
	 Structure Name
	Variable Description
	 Structure Name
	Variable Description
	 Structure Name
	Variable Description
	 Structure Name
	Variable Description
	Appendix D
	SDR OFDM Included CD
	Bibliography

