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Abstract 
 

Orthogonal Frequency Division Multiplexing (ODFM) has gained considerable 

attention the past couple of years. In our modern world the need for faster data 

transmission is never-ending. OFDM modulation provides us with a way of more 

densely packing modulated carriers in the frequency domain than other existing 

Frequency Multiplexing schemes, thus achieving higher data rates through 

communications channels. 

  

Software Defined Radio (SDR) creates a very good entry point for designing any 

communications system. SDR is an architecture that aims to minimise hardware 

components in electronic communications circuits by doing all possible processing in 

the software domain. Such systems have many advantages over existing hardware 

implementations and can be executed on various platforms and embedded systems, 

given that the appropriate analogue front ends are attached to the system. 

 

The purpose of this thesis is a study into Orthogonal Frequency Division Multiplexing 

and its implementation as it is described in the IEEE 802.11a specifications. The 

implementation in done in C++, and the software is written in a modular way, for easy 

porting to the Software Defined Radio libraries and other platforms. 

 

Afterwards, the OFDM software is tested, by decoding simulated as well as real-time 

OFDM signals. All the results are captured and critically compared against theoretical 

values and other existing systems. Finally the result of this thesis is a set of tested 

C++ functions together with real-time and simulated performance results and a 

detailed thesis explaining all the major issues involved. 
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Opsomming 
 

Ortogonale Frekwensie Deel Multipleksering (OFDM) is ‘n digitale modulasie 

tegniek wat vir die afgelope paar jaar groeiende aandag ontvang het. In ons moderne 

wêreld is die aanvraag vir vinniger data kommunikasiestelsels nimmer-eindigend. 

OFDM modulasie tegnieke bied ‘n manier om gemoduleerde draer-seine meer 

gekonsentreerd as ander bestaande Frekwensie Multiplekserende tegnieke in die 

frekwensie spektrum in te pas. Dus kan OFDM gebaseerde sisteme, hoër data koerse 

deur bestaande kommunikasie kanale handhaaf. 

 

Sagteware Gedefinieerde Radio (SDR) bied ‘n goeie ingangspunt vir die ontwerp van 

enige komunikasie sisteem. SDR is ‘n argitektuur wat poog om die aantal hardeware 

komponente in elektroniese kommunikasie stroombane te minimeer deur alle 

moontlike prosseering in sagteware te doen. Sulke sisteme het baie voordele bo 

bestaande hardeware implementasies en kan op verskillende platforms en toegewyde 

systeme uitgevoer word,  indien die regte analoog koppelvlak voorsien word. 

 

Die doel van die tesis is die studie van Ortogonale Frekwensie Deel Multipleksering 

en die implementasie soos dit in die IEEE 802.11a spesifikasies beskryf word. Die 

implementasie word gedoen in C++. Die sagteware moet in ‘n modulêre manier 

geskryf word, vir maklike oordrag na die Sagteware Gedefinieerde Radio biblioteke 

en ander platforms. 

 

Uiteindelik sal die OFDM sagteware getoets word deur gesimuleerde en reële-tyd 

OFDM seine te dekodeer. Alle toetsresultate word krities vergelyk teen verwagte 

waardes en reeds bestaande sisteme. Die resultaat van die tesis is a stel getoetsde C++ 

programme, tesame met hulle simulasie en toets resultate, asook ‘n gedetailleerde 

tesis wat alle belangrike kwessies volledig bespreek. 
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Chapter 1  
 

Introduction 
 

1.1 Introduction 

 

This thesis basically consists of two major parts. The first part is a study of 

Orthogonal Frequency Division Multiplexing and its implementation as it is described 

in the IEEE 802.11a specifications. The second part is a look at Software Defined 

Radio, an exciting new methodology, which attempts to minimise fixed hardware 

components in electronic circuits by moving all possible processing to the software 

domain. The aim of this thesis is a basic IEEE 802.11a OFDM transceiver system 

written in a modular form in C++ for future implementation in embedded SDR 

systems. 

 

1.2 Orthogonal Frequency Division Multiplexing (OFDM) 

 

Orthogonal Frequency Division Multiplexing (OFDM) is a frequency multiplexing 

technique that has gained considerable attention the past few years. This multicarrier 

transmission technique densely squeezes multiple modulated sub-carriers closely 

together in the frequency domain, for more efficient bandwidth usage, opposed to 

other frequency division multiplexing systems. OFDM is already used in various 

communications systems including Digital Subscriber Line (DSL) systems, Digital 

Audio and Digital Video Broadcasting  (DAB, DVB) [3,12] and wireless LAN 

systems called WIFI based on the IEEE 802.11a specifications [1,2]. 

 

The modulated sub-carriers within an OFDM symbol are orthogonal to each other, 

which means that they do not interfere with each other. Sub-carrier orthogonality is 

accomplished by exploiting the properties of the symbol windowing function and by 

choosing precise sub-carrier frequencies. Sub-carriers are encoded using different 

digital modulation techniques such a Binary Phase-shift Keying (BPSK), Quadrature 

Phase-shift Keying (QPSK) and Quadrature Amplitude Modulation (QAM). 
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OFDM offers many advantages above single carrier modulation schemes, and is a 

very good candidate for noisy office environments. The narrow-band multi-carrier 

modulation does not require any channel equalisation [3], and is very good at 

mitigating the effect of narrowband interference and frequency selective fading [12]. 

OFDM is also very good at mitigating the effects of time dispersions. The long 

OFDM symbol periods helps combat inter-symbol interference (ISI)  

 

A digital communications system utilising an OFDM modulation scheme could 

theoretically use available bandwidth more efficiently than many other schemes. By 

breaking the bandwidth up into smaller sections, different sub-carrier modulation 

schemes could be used (sub-carrier bit loading [12]), depending on the quality of each 

section of bandwidth, which makes OFDM efficient, flexible and adaptable to 

changing environments. 

 

1.3 Software Defined Radio (SDR) 

 

Software Defined Radio (SDR) is a communications architecture that aims to 

minimise the use of fixed hardware components in electronic circuits by moving all 

possible processing to a software domain. Such a system has the advantage of being 

highly flexible. A generic hardware platform could become any radio communications 

device, depending upon the software loaded onto the embedded processor, the RF 

front end, the sampling rate and the processor power available to the software.  

 

The advantages of such systems are numerous and make it an ideal candidate for 

developing and testing a communications system. SDR systems are easily 

upgradeable, not needing any hardware changes, only a simple software upload, 

which in the future, could even be done “over the air” using appropriate software 

boot-loaders. Reusable software components in different projects has the ability of 

significantly reducing system design times, which means faster prototyping and faster 

time to market of final products. 

 

Software Defined Radio is definitely a methodology that will become more popular in 

the future, and will increase in popularity as embedded processors and digital solid-

state memory become more powerful and shrink in size. 
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1.4 Thesis Objectives 

 

The objective of this thesis is to: 

• Introduce the reader to OFDM modulation systems and its advantages and 

disadvantages over existing FDMA systems. 

• Introduce the reader to existing digital modulation techniques and how it is 

related to OFDM modulation. 

• Study the mathematics behind OFDM, study the encoding and decoding 

process, and develop means of digitally implementing such a system. 

• Identifying and overcoming the main OFDM system performance influencing 

factors. 

• Introducing the reader to the IEEE 802.11a standard of OFDM modulation. 

• Implementing and IEEE 802.11a based OFDM system in software for use in a 

Software Defined Radio environment. 

• Simulating the IEEE 802.11a OFDM system, measuring its performance and 

capturing vital results and statistics. 

• Implementing a real-time IEEE 802.11a OFDM system, measuring its 

performance and capturing vital results and statistics. 

• Comparing and critically analysing simulation and real-time OFDM 

performance results. 

• Concluding on all findings and results and suggesting on further research in 

the area. 

 

1.5 Thesis Overview 

 

The structure of this thesis is as follows: 

 

Chapter 1: Introduction 

• A literature study into OFDM and SDR, its advantages and disadvantages, 

also stating the objectives of this thesis and a brief synopsis on the results and 

findings of the simulations and real-time implementation tests of the OFDM 

transceiver system. 
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Chapter 2:  An Overview of Digital Modulation Techniques and Frequency 

Division Multiplexing 

• An overview of existing digital modulation techniques, as well as how 

Frequency Division Multiplexing works. Introducing the fundamental 

encoding techniques, which forms the basis of OFDM encoding. 

 

Chapter 3: OFDM Mathematics 

• A detailed study of the mathematics behind OFDM, describing its workings in 

both the time domain and the frequency spectrum. The important issue of 

orthogonality is also discussed and proved. 

 

Chapter 4: Encoding and Decoding OFDM Data Symbols 

• A detailed look at the digital implementation of encoding and decoding single 

OFDM data symbols, and then expanding it to encode and decoded OFDM 

symbol trains. 

 

Chapter 5: Identifying and Overcoming OFDM System Performance Influences  

                   (Problems due to real life factors) 

• In practice, data transmission over analogue channels is prone to various 

performance influencing factors like noise, synchronisation, multipath 

interference, peak-to-average power ratio issues and communications channel 

estimation. Here we examine most of these factors, and introduce methods for 

overcoming them. 

 

Chapter 6: IEEE 802.11a OFDM Standard 

• The IEEE 802.11a standard incorporates OFDM modulation with some set 

parameters. It is a robust standard with the ability to overcome many of the 

major OFDM problems introduced by real-life factors. In this chapter the 

IEEE 802.11a standard is examined and its workings described in detail. 
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Chapter 7: SDR Implementation of an IEEE 802.11a OFDM System 

• A working implementation of the IEEE 802.11a system is one of the main 

purposes of this thesis. This chapter fully describes the design decisions, how 

the software works, as well the as the test platform it is tested on and the test 

program it is tested with. It also includes some recommendations for future 

implementations of the system. 

 

Chapter 8: OFDM System Performance Tests and Results 

• To determine how well the software works, it will need to be tested. In this 

chapter the OFDM software is tested, by first decoding simulated OFDM 

signals, influenced by noise and sampling frequency drift. Finally the real-time 

buffered implementation is tested. Vital performance statistics are captured 

and compared against theoretical values as well as other existing systems. 

 

Chapter 9: Conclusions 

• Concluding on OFDM and SDR, mentioning the most important facts about 

the system, like the 2.2 dB implementation loss and the current encoding and 

decoding times; concluding on the OFDM system performance and 

recommendations for future OFDM and SDR systems. 

 

Appendix  

• The appendices include some mathematical proofs used in the thesis as well as 

additional information about modulation techniques and the implemented 

OFDM system. 

 

1.6 Synopsis on Thesis Results 

 

OFDM is a very attractive modulation technique especially for office environments 

where high data rates are a necessity but where the relatively long multi-path delays 

and possible narrow-band interference could cause big problems for high-speed single 

carrier modulation techniques. OFDM also has its fair share of disadvantages and 

performance influencing factors that are addressed in this thesis. The implemented 

IEEE 802.11a transceiver system works well but has an approximate 2.2dB 
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implementation loss. The implementation loss is a mainly the result of noise on the 

OFDM reference sub-carriers and could be improved by better programming.  

 

1.7 Conclusions 

 

OFDM and SDR has been introduced as well as the plan to combine them and design 

an IEEE 802.11a OFDM transceiver system in software that can later be ported to 

SDR platforms. The thesis objectives have also been stated as well as a quick 

overview of the thesis as a whole. In the next chapter we will look at different digital 

modulation techniques, which forms the basis of OFDM modulation, as well as more 

detail on FDMA and how it relates to OFDM. 
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Chapter 2 
  

An Overview of Digital Modulation 

Techniques and Frequency Division 

Multiplexing 
  

2.1 Introduction 

 

OFDM modulation is a multi-carrier modulation technique, which is based on existing 

digital modulation techniques. OFDM sub-carriers are orthogonal to each other, 

which means that, under normal circumstances, the sub-carriers do not influence each 

other in any way.  The performance of an OFDM modulated system is thus directly 

influenced by the performance of the individual sub-carriers. Studying single carrier 

digital modulation techniques gives us a clearer picture of how a large OFDM system 

should perform. Furthermore OFDM is a special subset of a multiplexing 

methodology called Frequency Division Multiple Access (FDMA). Both OFDM and 

FDMA multiplex multiple sub-carriers in the frequency spectrum. In the case of 

FDMA systems, adjacent sub-carriers are placed far enough from each other to avoid 

their individual bandwidths from overlapping, which would result in inter-carrier 

interference, and degradation in the encoded data. Furthermore, because FDMA sub-

carriers are usually decoded separately the distance between sub-carriers should be 

large enough to allow for the band-pass filtering of the selected sub-carrier; this 

distance is usually referred to as the guard band. In the case of OFDM systems, the 

bandwidths of adjacent sub-carriers are allowed to overlap, given that certain criteria 

are met which insure sub-carrier orthogonality. All the sub-carriers within an OFDM 

symbol are encoded and decoded together, which removes the need for a guard band, 

and increases bandwidth efficiency. 

 

 

 

 26



2.2 An Overview of Digital Modulation Techniques 

 

The process of encoding digital bit data into an analogue representation of the data is 

usually referred to as “shift keying”. The most basic “shift keying” techniques encode 

digital data onto sinusoidal waveforms by manipulating the amplitude, frequency or 

phase of the sinusoidal waveform.  

 

2.2.1. Amplitude-Shift Keying (ASK) 

 

One of the most basic digital modulation techniques is called Amplitude-Shift Keying 

(ASK). ASK encodes digital data bits on to a sinusoidal carrier wave by manipulating 

the amplitude of the sinusoid.  

 

 
 

Figure 2.1: An ASK digitally modulated bit stream of {1,0,1,1,0}. The top figure is 

the digital data bits m(t), the second figure is the sinusoidal carrier wave and the third 

figure is the ASK modulated signal. 

 

The digital bits are represented either by a 1 or a 0 and can be expressed as 

 

{ }m(t) 0,1 .=                                                    (2.1) 
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The ASK digitally modulated signal can be expressed as  

 

Cs(t, f ) m(t)Acos(2 f t )C= π + φ                                      (2.2) 

 

or in a complex form as 

 

[ ]C C C Cs(t, f ) m(t)A (f ) m(t)A cos(2 f t ) i sin(2 f t )= ∠φ = π + φ + π +φ           (2.3) 

 

2.2.2 Phase-Shift Keying (PSK) 

 

Another more popular digital modulation technique is called Phase-Shift Keying 

(PSK). PSK encodes digital data bits onto a sinusoidal carrier wave by manipulating 

the phase of the sinusoid. PSK is a very popular technique because of its high 

immunity to noise. The most basic PSK technique is called Binary Phase-Shift 

Keying (BPSK). The digital bits are represented either by a 1 or a 0 and can be 

expressed as 

{ }m(t) 0,1 .=                                                    (2.4) 

 

The digital bits are mapped to phase angles, and in the case of BPSK, the 0 is mapped 

to 0 radians and the 1 is mapped to π radians. The mapped bits can be expressed as 

 

{ }r(t) m(t) 0, .= π = π                                              (2.5) 

 

The BPSK digitally modulated signal can be expressed as  

 

C Cs(t, f ) A cos(2 f t r(t))= π +                                        (2.6) 

 

or a in complex form as 

 

[ ]C C C Cs(t, f ) A r(t)(f ) A cos(2 f t r(t)) i sin(2 f t r(t))= ∠ = π + + π + .            (2.7) 
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The same signal can also be expressed as a complex exponential as 

 
cj2 f t r ( t )

C Cs(t, f ) A r(t)(f ) Ae π += ∠ =                                     (2.8) 

 

which then finally becomes 

 

( ) c

c

j2 f t j2 f tjr ( t )
Cs(t, f ) Ae e C eπ= = c

f
π .                                  (2.9) 

 

CfC  is the complex coefficient that describes the amplitude and phase of the carrier 

wave at frequency . This is a popular method of describing modulated signals and 

is also used in describing IEEE 802.11a OFDM signals. Refer to Sections 3.2.1, 6.2.2, 

6.2.3 and 6.2.5.4 to see how the complex coefficients are implemented in OFDM 

modulation. 

Cf

 

 
 

Figure 2.2: A BPSK digitally modulated bit stream of {1,0,1,1,0}. The top figure is 

the digital data bits m(t), the second figure is the sinusoidal carrier wave and the third 

figure is the BPSK modulated signal. 
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It is possible to increase the encoding capabilities of PSK modulation schemes by 

mapping additional data bits to additional sinusoid phases. One of the most popular 

PSK methods is called Quadrature Phase-Shift Keying. It encodes two digital bits on 

to a sinusoidal carrier by using four possible phase angles. The digital bits it can 

encode is expressed by 

 

{ }m(t) 00,01,10,11 .=                                           (2.10) 

 

The resulting phase angles is given by 

 

{ }r(t) 4,3 4,5 4,7 4 .= π π π π                                    (2.11) 

 

It is further possible to combine ASK and PSK modulation to produce a modulation 

technique called Quadrature Amplitude Modulation (QAM). QAM has the ability to 

encode data bits to various sinusoid phases and amplitudes.  

 

Selecting an appropriate digital modulation scheme is a complicated matter. Many 

factors has to be taken into account, for example, transmitter complexity and power, 

receiver complexity and sensitivity, transmission channel quality as well as the effects 

that noise has on the quality of the modulated signals. Noise influences the 

modulation schemes in different ways. For the purpose of this thesis, only the QPSK 

modulation scheme is going to be examined further. For more information about all 

the different modulation schemes please refer to [7,8,9]. 

 

2.3 The Influence of Noise on Digital Modulation 

 

Noise can be described as unwanted random (typically electromagnetic) interference 

that degrades the quality of signals. There exist two different types of noises. 

 

Additive White Gaussian Noise (AWGN) is interference with a flat frequency 

spectrum [11]. This means that the long-term influence of AWGN is the same for all 

the frequency elements in a signal. The source of AWGN is radiation picked up from 
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radio transmissions and thermal noise picked up by hardware. The effects of AWGN 

can be estimated and quantified my means of statistic analysis.  

 

Coloured noise is interference with a non-flat frequency spectrum. This means that the 

long-term influence of coloured noise is different for different frequency elements in a 

signal. The source of coloured noise could be many things like electrical interference 

from fast switching power supplies. The effects of coloured noise cannot be easily 

estimated and influences signal quality in unpredictable ways. Coloured noise will not 

be discussed in this thesis, since it is not a signal processing problem, but an 

electronic design problem, which can only be solved by analysing complete electronic 

system designs, and shielding electronic components from the noise sources. 

 

2.3.1 Quantifying Additive White Gaussian Noise 

 

AWGN signals are purely random and it is impossible to predict its instantaneous 

value at any time. Since noise has amplitudes that vary randomly with time, it can 

only be quantified by probability density functions. A probability density function 

relates a signal value with a probability of such a signal occurring. AWGN has a 

Gaussian probability density function, given by the formula [10], 

 
2

2
(x x)
2

2

1p(x) e .
2

− −
σ=

πσ
                                         (2.12) 

 

The two main parameters of a gaussian probability density function is: 

• The mean or expected value of the noise, given by x , which is zero for 

AWGN. 

• The standard deviation of the noise, given by σ , is the RMS value of the noise 

signal. 

 

Since instantaneous noise signals are totally random, it is impossible to predict the 

possibility of a certain discrete value occurring. It is possible though to calculate the 

possibility of a the noise signal being in a certain range [a,b], and it is given by the 

probability function P(x), 
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2

2
(x x)b b
2

2
a a

1P(a x b) p(x)dx e dx.
2

− −
σ< < = =

πσ
∫ ∫                        (2.13) 

 

 

 
 

Figure 2.3: An example of a Gaussian Noise signal. (RMS = 1) 

 

It is thus possible to calculate the possibility of a noise signal occurring with a certain 

range of values, if the RMS value of that noise signal is known.  

 

 
Figure 2.4:  The Gaussian Probability Distribution Function. 
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2.3.2 Signal-To-Noise Ratio 

 

AGWN is additive, which means that the noise signal adds to the existing signal, 

resulting in a distorted version of the original signal. 

 

 
S(t,fc) U(t,fc)=S(t,fc)+n(t,σ)  

 

 n(t,σ) (the noise) 

 

It is possible to determine the quality of a digitally modulated signal influenced by 

AWGN using the probability density function and the standard deviation of the noise 

signal. Signal quality is defined as the ratio [7] of signal power over noise power, 

called the Signal-to-Noise Ratio 

 
2

rms

rms

s (t, fc)Signal PowerSNR  .
Noise Power n (t, )

⎛ ⎞
= = ⎜ σ⎝ ⎠

⎟                            (2.14) 

 

Digital modulation uses sinusoidal carrier waves, of which the RMS value can easily 

be calculated as ( )1 2 A 1. The Signal-to-Noise ratio (power) of a digitally 

modulated sinusoid influenced by AWGN, then becomes 

 
2 21 ASNR .

2
⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ σ⎝ ⎠⎝ ⎠

                                          (2.15) 

 

A popular way of expressing the Signal-to-Noise ratio, is by means of its decibel 

value, 

 
2 2

dB 10 10 10
1 A 1 ASNR 10log (SNR) 10log 20log
2 2

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞= = =⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎬σ σ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭⎪ ⎪⎩ ⎭
.  (2.16)  

                                                 
1 Appendix A.3 (Calculating the RMS value of a sine wave) 
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2.3.3 Probability of Error in Quadrature Phase Shift-Keying Modulation 

 

Noise degrades the quality of modulated signals. This ultimately leads to modulated 

signals being demodulated incorrectly and the decoded digital data bits being wrong. 

Because of the randomness of AWGN, it is impossible to predict the exact locations 

of incorrectly decoded bits; it is however possible to theoretically predict the amount 

of incorrectly decoded bits in the long run, and from that calculate error probabilities 

like the symbol-error rates and bit-error rates. 

 

QPSK modulation encodes two data bits into a sinusoidal carrier wave by altering the 

sinusoidal carrier wave’s phase. We can define the four separate QPSK symbols as 

 

 
11 C Cs (t, f ) A cos(2 f t 4);    if m(t)=11,π + π�  (2.17)

 
01 C Cs (t, f ) A cos(2 f t 3 4);    if m(t)=01,π + π�  (2.18)

 
00 C Cs (t, f ) A cos(2 f t 5 4);    if m(t)=00,π + π�  (2.19)

 
10 C Cs (t, f ) A cos(2 f t 7 4);    if m(t)=10.π + π�  (2.20)

 

If these symbols are then subjected to noise, the resultant noisy symbols can be 

expressed as 

 

 11 C 11 Cu (t, f ) u (t, f ) n(t, ),= + σ  (2.21)

 01 C 01 Cu (t, f ) u (t, f ) n(t, ),= + σ  (2.22)

 00 C 00 Cu (t, f ) u (t, f ) n(t, ),= + σ  (2.23)

 10 C 10 Cu (t, f ) u (t, f ) n(t, ).= + σ  (2.24)

 

To clearly see the effects of the noise on the modulated symbols, it is useful to display 

the symbols and the noise on a constellation diagram. A constellation diagram 

transforms sinusoidal symbols into their amplitude and phase components. Figure 2.5 

shows the QPSK constellation diagram with probability density functions showing the 

effects of noise at each symbol. A QPSK decoder will decode the digital data bits 

depending upon which quadrant the received symbol is located. It is possible for noise 
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to add to a symbol and corrupt its amplitude so much that it ends up in an incorrect 

quadrant, and thus decoding the data bits incorrectly. This is called a symbol error. 

 

 
 

Figure 2.5:  A constellation diagram of a QPSK encoded signal with AWGN 

 

In order to calculate symbol error probabilities we first view the problem in one 

dimension. The probability that a QPSK decoder will incorrectly decode a symbol 

 given that the correct transmitted symbol was in fact a  is given by the formula 00u 10s

 
2

2
(x A 2 )0

2
00 10 2

1P(u | s ) P( x 0) e dx.
2

− −
σ

−∞

= −∞ < < =
πσ

∫                 (2.25) 

 

The probability function then reduces to 

 
2A 2 (y)

2
00 10

1P(u | s ) e dy.
2

− σ −

−∞

=
π ∫                                  (2.26) 
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Unfortunately this function is not directly solvable and lookup tables are used to 

determine the results. There exists a function, though, that is closely related to the 

above probability function. The Q-function [10], is defined as 

 
2x

2

x

1Q(x) e dx.
2

∞ −

π∫�                                          (2.27) 

 

We can then rewrite the probability function (2.26) in terms of the Q-function defined 

in (2.27) so that 

 

00 10
AP(u | s ) Q .
2

⎛= ⎜
⎞
⎟σ⎝ ⎠

                                        (2.28) 

 

Using the same procedure it is possible to calculate the probability that the QPSK 

decoder will incorrectly decode a symbol  given that the correct transmitted 

symbol was in fact a as 

11u

10s

11 10
AP(u | s ) Q .
2

⎛= ⎜
⎞
⎟σ⎝ ⎠

                                         (2.29) 

 

Furthermore there is also the remote possibility that the QPSK decoder will 

incorrectly decode a symbol  given that the correct transmitted symbol was in fact 

a . This is however only possible when the noise signal is large enough so that in 

the horizontal dimension  was incorrectly decoded as  and in the vertical 

dimension  was incorrectly decoded as . The probability of a symbol  to be 

incorrectly decoded as a  is thus given by 

01u

10s

10s 00u

10s 11u 10s

01u

 

01 10 00 10 11 10P(u | s ) P(u | s )P(u | s )=                                  (2.30) 

 

which gives 

 

2
01 10

AP(u | s ) Q .
2
+⎛= ⎜

⎞
⎟σ⎝ ⎠

                                       (2.31) 
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Finally it is possible to calculate the total probability that a symbol will be decoded 

incorrectly as the probability that  will either be incorrectly decoded as a 

symbol, a symbol or a  symbol. In cases like this, it is easier to calculate error 

probabilities through the use of correctness probabilities, which is given by 

10s

10s 11u  

00u 01u

 

CP 1 P.= −                                                    (2.32) 

 

The probability that a symbol  will be decoded correctly as a symbol is thus the 

product of symbol  being decoded correctly in terms of the other three quadrants. 

This is given by 

10s 10u

10s

 
C 10 C 00 10 C 11 10 C 01 10P (s ) P (u | s )P (u | s )P (u | s )=                          (2.33) 

 

which becomes 

 

C 10 00 10 11 10 01 10P (s ) (1 P(u | s ))(1 P(u | s ))(1 (P(u | s ))= − − −                (2.34) 

 

and can then be written in terms of the Q-function as 

 

2
C 10

A AP (s ) 1 Q 1 Q 1 Q
2 2

⎡ ⎤ ⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎢ ⎥ ⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟
A
2

⎤
⎥σ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

               (2.35) 

 

which then finally reduces to 

 

3 4
C 10

A AP (s ) 1 2Q 2Q Q .
2 2

⎛ ⎞ ⎛ ⎞ ⎛= − + −⎜ ⎟ ⎜ ⎟ ⎜
A
2

⎞
⎟σ σ σ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                   (2.36) 

 

Converting to error probability, the probability for the single symbol error in a QPSK 

decoder is given as 

 

10 10
AP(u | s ) 2Q .
2

⎛≈ ⎜
⎞
⎟σ⎝ ⎠

                                        (2.37) 
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Using the above procedures, it is possible to prove that the symbol error probability 

for the other combinations is exactly the same: 

 

00 00 01 01 10 10 11 11
AP(u | s ) P(u | s ) P(u | s ) P(u | s ) 2Q .
2

⎛= = = ≈ ⎜ σ⎝ ⎠

⎞
⎟          (2.38) 

 

The total symbol error rate (SER) of a QPSK decoder can finally be calculated as the 

average symbol error probability of , ,  and 

. The SER thus becomes 

00 00P(u | s ) 01 01P(u | s ) 10 10P(u | s )

11 11P(u | s )

 

00 00 00 01 01 01

10 10 10 11 11 11

SER P(u | s )P(s ) P(u | s )P(s )
  P(u | s )P(u ) P(u | s )P(u )

= +
+ +

                       (2.39) 

 

which then becomes 

 

[ ]00 01 10 11
ASER 2Q P(u ) P(u ) P(u ) P(u ) .
2

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟σ⎝ ⎠⎣ ⎦
+               (2.40) 

 

It is impossible to calculate the probability of each symbol occurring, but because we 

know the QPSK decoder will always choose one of the possible four quadrants, the 

sum of the probabilities are equal to one.  

 

[ ]00 01 10 11P(u ) P(u ) P(u ) P(u ) 1.+ + + =                              (2.41) 

 

The symbol error rate for a QPSK decoder is thus 

 

ASER 2Q .
2

⎛= ⎜
⎞
⎟σ⎝ ⎠

                                            (2.42) 

 

A more useful form of expressing error rates is by using the QPSK Bit Error Rate. A 

QPSK symbol encodes two digital data bits, but because of the way the digital data 

 38



bits are located in the constellation, a single QPSK symbol error, will in most cases 

result in only one bit error. The bit error rate (BER) is thus only half of the SER for 

QPSK decoders. BER gives the estimated amount of erroneous decoded bits due to 

noise. The Bit Error Rate for a QPSK decoder is thus 

 

ABER Q .
2

⎛= ⎜
⎞
⎟σ⎝ ⎠

                                              (2.43) 

 

The symbol error rates and bit error rates can further be expressed as a function of the 

Signal-to-Noise Ratio, so that 

 

( )SER 2Q SNR=                                             (2.44) 

and 

 

( )BER Q SNR .=                                             (2.45) 

 

The SER and BER can be rewritten in another perhaps more popular method of 

describing the SNR, through the use of the bit energy and the noise power density 

[8,9]. Firstly the noise power density is equal to the noise power divided by the 

bandwidth it occupies, 

n

NNo .
B

=                                                     (2.46) 

 

The symbol energy, ES, of the symbol is equal to the symbol power, C, divided by the 

symbol rate, RS, so that, 

S
S

CE
R

= .                                                    (2.47) 

 

The symbol energy to noise power density ratio, can be calculated as 

 

S n

S

E BC .
No R N

=                                                (2.48) 
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As already mentioned the bit rate of a QPSK encoded signal is twice the symbol rate, 

because each symbol can encode 2 bits. Equation (2.48) can thus be rewritten in terms 

of bit energy, EB, and bit rate, RB, to give the bit energy to noise power density ratio, 

also known as the Eb/No ratio [8]: 

 

B

B

E 1 C .
No 2 R N

= nB                                               (2.49) 

 

The bit rate is equal to twice the signal rate, which is also the Nyquist sampling rate of 

the signal. If the receiving filter filters the signal at this frequency, then the noise 

bandwidth is equal to the bit rate so that RB = BN. Equation (2.49) can thus be 

rewritten as 

 

BE 1 C .
No 2 N

=                                                   (2.50) 

 

The power of a sine wave is equal to the square of the RMS amplitude of the sine 

wave. Thus the symbol power becomes 

 
2
RMSC A .=                                                    (2.51) 

 

In the same way, the power of an AWGN signal is the square of the RMS of the noise, 

which is also the standard deviation of the AWGN, 

 
2
RMSN n .2= = σ                                                (2.52) 

 

Equation (2.50) can now be rewritten in terms of (2.51) and (2.52) as 

 
2
RMSB

2

AE 1 .
No 2

=
σ

                                               (2.53) 
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Equation (2.53) can now be rewritten in terms of the SNR power ratio from Equation 

(2.15) to give 

 

B2ESNR .
No

=                                                  (2.54) 

 

This means that the SER and BER for QPSK signals can now be rewritten in terms of 

the Eb/No ratio as [9]: 

 

B2ESER 2Q
No

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟                                             (2.55) 

 

and 

 

B2EBER Q .
No

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟                                            (2.56) 

 

Equation (2.55) and (2.56) corresponds to the results for probability of error binary 

modulation. [8,9] 

  

Figure 2.6 shows the graph of the error probabilities versus the SNR values.          
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Figure 2.6:  BER and SER vs. SNR of a QPSK modulated signal. 

 

Table 2.1 shows the error probabilities versus the SNR values          

 

Signal-to-Noise Ratio (dB) Bit Error Rate (BER) Symbol Error Rate (SER) 

0 7,86e-2 1,57e-1 

1 5,63e-2 1,126e-1 

2 3,75e-2 7,5e-2 

3 2,3e-2 4,16e-2 

4 1,25e-2 2,5e-2 

5 6,0e-3 1,2e-2 

6 2,4e-3 4,8e-3 

7 7,7e-4 1,5e-3 

8 1,9e-4 3,8e-4 

9 3,36e-5 6,73e-5 

10 3,87e-6 7,74e-6 

 

Table 2.1: BER and SER vs. SNR of a QPSK modulated signal 
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From these results is it clear to see that noise degrades the quality of transmitted 

signals and causes errors the transmitted digital data. These values are theoretical; a 

practical system might not be able to achieve these rates, but should always strive to 

be as close as possible. 

 

2.4 An Overview of Frequency Division Multiplexing 

 

Frequency Division Multiple Access (FDMA) is a methodology that enables multiple 

signals to simultaneously co-exist in the frequency spectrum, by being placed at non-

overlapping frequencies. The original signals are modulated and up-converted at 

carrier frequencies high enough to be transmitted as electromagnetic waves. In order 

do decode the data in single FDMA sub-carriers, all the adjacent sub-carriers need to 

be removed in order to minimise cross-band interference. Bandpass filtering of the 

selected sub-carrier removes all other sub-carriers. Practical filters cannot have 

infinitely sharp cut-offs. 

 

 
 

Figure 2.7: Example of FDMA modulated signals, and their guard-bands (G) 

 

This means that the edges of the filter, at which point the filter starts attenuating 

undesired signals, will not falloff instantaneously. The filters need some bandwidth to 

falloff and attenuate out of band signals sufficiently. This means that adjacent FDMA 

sub-carriers can’t be placed exactly next to each other; some space between them is 

needed for the filters. These spaces between sub-carriers are called guard-bands. 

Guard-bands use up frequency space that could be used for extra sub-carriers, thus 

reducing bandwidth efficiency.  
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FDMA is used in many applications, including FM radio transmission, Digital 

European Cordless Telephones (DECT) and Advanced Mobile Phone System 

(AMPS) cell phones. 

 

2.5 Conclusions 

 

This chapter introduced some basic digital modulation schemes, which forms the 

basis of OFDM modulation, including QPSK, which is used in the practical 

implementation of the OFDM system. The important issue of noise and digital 

modulation error probabilities where examined up to a point where the theoretical bit- 

and symbol error rates were calculated. These values will be used later in comparisons 

with the OFDM system, and to determine its efficiency. Furthermore, OFDM is just a 

special case of FDMA, and the look at FDMA provides useful insights and shows the 

advantages of OFDM over FDMA. In the next chapter we look at the mathematics 

behind OFDM in order to understand it better and to see how it relates to single 

carrier digital modulation techniques, as the ones examined in this chapter. 
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Chapter 3 
  

OFDM Mathematics 
  

3.1 Introduction 

 

Before digitally implementing an OFDM system, it is important to study the 

mathematics behind OFDM systems. An in-depth study of the mathematics will show 

how digital data bits are encoded into OFDM symbols, and how the digital data bits 

can be decoded from them as well. The issue of orthogonality will also be discussed 

and proved in this chapter. 

 

3.2 A Mathematical Approach to OFDM Symbols 

 

An OFDM symbol can be described as the result of a number of summated, digitally 

modulated sub-carriers at certain very specific frequencies, multiplied with a 

rectangular window of a very specific length. To completely understand the inner 

workings of OFDM, is should be studied in both the time domain and the frequency 

domain.  

 

3.2.1. Time-Domain Analysis of OFDM Symbols 

 

The rectangular window function has an amplitude of AW, a width of tW and is also 

shifted by tW seconds. The rectangular window is given by 

 

w
W

w

t tw(t) A
t

⎛ ⎞−
= ∏⎜

⎝ ⎠
⎟ .                                            (3.1) 

 

The sub-carriers all have the same amplitude of A. The summed sub-carriers are given 

by 

                                                (3.2) 
C 1

c C
c 0

c(t) [AS (t, f )],
−

=

= ∑
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where  is a digitally modulated sine wave as described in Section 2.2.2. The 

time-domain expression for an OFDM symbol is simply the product of the rectangular 

windowing function and the sub-carriers, see Figure 3.1, and is given by 

c CS (t, f )

 
C 1

w
c c C W

c 0 w

t to (t) w(t)c(t) [AS (t, f )] A .
t

−

=

⎛ ⎞−⎡ ⎤
= = ∏⎜⎢ ⎥

⎣ ⎦ ⎝ ⎠
∑ ⎟                      (3.3) 

 

Equation (3.3) can be rewritten so that the sub-carriers can be expressed as complex 

exponentials as determined in (2.9) 

 

( )C  

C 1
j 2  f t w

c c W
c 0 w

t to (t) AC e A .
t

−
− π

=

⎛ ⎞−⎡ ⎤
= ⎜⎢ ⎥
⎣ ⎦ ⎝ ⎠
∑ ∏ ⎟                             (3.4) 

 

   
 

Figure 3.1: A real time-domain OFDM signal: The top four figures are modulated 

sub-carriers, the fifth figure is the resulting summated sub-carriers, c(t), the sixth 

figure is the rectangular windowing function, w(t), and the last image is the Resulting 

OFDM symbol oc(t). 
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Figure 3.2: The Fourier Transform of the rectangular window: The top figure is the 

rectangular window. The bottom is the sinc waveform (magnitude spectrum), and the 

effect of the rectangular window length on the shape of the sinc waveform. 

 

3.2.2. Frequency-Domain Analysis of OFDM Symbols 

 

The spectrum of the OFDM symbol is obtained by using the Fourier Transform: 

 

j 2  f  t
c cO (f ) o (t)e dt.

∞
− π

−∞

= ∫                                         (3.5) 

 

By expressing the OFDM symbol in the frequency spectrum, the role of the sub-

carrier frequency positions and the rectangular window length becomes much clearer. 

They are the key variables upon which OFDM orthogonality depends. The Fourier 

Transform of the time-domain OFDM symbol transforms the modulated sub-carriers 

into phase carrying impulses in the frequency spectrum, while the rectangular window 

is transformed into a sinc function. Multiplication of the modulated sub-carriers with 

the rectangular window in the time domain results in a convolution of the impulses 

with the sinc function in the frequency spectrum. The final result of the convolution is 

sinc functions placed at all the positions of the impulses. A sinc waveform is defined 

as sin( ft)sinc(ft)
ft
π

=
π

  and shown in Figure 3.2. 
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The convolution operator is given by the ∗  symbol. The magnitude spectrum of the 

OFDM symbol is calculated as 

 

( )
C 1

c c w w
c o

| O (f ) | | A (f f )   A t sinc(f  t ) |  .
−

=

= δ + ∗∑ w

)c+

                         (3.6) 

 

The magnitude spectrum of the OFDM symbol can thus be simplified to give 

 

(
C 1

c w w w
c o

| O (f ) | | AA t sinc(t (f f ) |  .
−

=

= ∑                               (3.7) 

 

Equation (3.7) can be described as a summation of sinc-waveforms at the original 

impulse locations.  

 

 
 

Figure 3.3: An OFDM magnitude spectrum. The top figure is the modulated sub-

carrier impulses (time-unlimited), the second figure is the resulting sync-waveform 

and the last figure, is (time-limited) OFDM symbol spectrum, showing the 

overlapping bandwidths. 
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A closer look at the sinc function shows that it contains periodic zeroes, which is a 

function of the window length and can easily be determined as2

 

sinc
wsinc w

sinc

m  0;   where  f   ;   m [1, 2,..., ]
tsinc(f t )  .

  1;   where  f 0

⎧ ⎫= ∈ ∞⎪ ⎪= ⎨ ⎬
⎪ ⎪=⎩ ⎭

               (3.8) 

 

Since all the modulated sub-carriers are windowed using the same rectangular 

window, the sinc-waveform for each of them will be exactly the same. By choosing 

 

cf 1 tw=                                                       (3.9) 

 

it is possible to shape the sinc functions so that the zero-points from all the sub-

carriers align, to give a spectrum as in Figure 3.3. The sub-carrier impulses are located 

at the middle of each sinc-waveform, where the value of the sinc is only one, which 

means that the sub-carrier information stays unchanged. The OFDM sub-carriers are 

therefore orthogonal to each other at each sub-carrier frequency. 

 

3.3 The Issue of Orthogonality 

 

From Figure 3.3 it seems that the sub-carriers are orthogonal, when choosing the 

inter-sub-carrier frequency spacing equal to the reciprocal of the rectangular window 

length, but it is important to prove that this is true for all possible values of and  cf wt .

 

To prove that two arbitrary signals are mathematically orthogonal, the integral of the 

product of the arbitrary signals needs to be zero: 

 

1 2w (x).w (x)dx 0
∞

−∞

=∫ .                                           (3.10) 

 

 

 

                                                 
2 Appendix A.2: Finding the zeroes of a sinc waveform 
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We can now replace signal  with the sinc waveform and  with a train of 

equally spaced impulses representing the modulated sub-carriers at the locations of 

the zero-points of the sinc waveform. 

1w (x) 2w (x)

 

w
w

msinc(t x) (x )dx   ;   m [1, 2,..., ].
t

∞

−∞

δ − ∈∫ ∞                         (3.11) 

 

According to [10] Appendix A, the integral of any continuous arbitrary signal with an 

impulse, will result in the arbitrary function being evaluated at the location of the 

impulse, so that 

 

0 0(x) (x-x )dx  (x ) where (x) is the arbitrary function.
∞

−∞

φ δ = φ φ∫           (3.12) 

 

This means that (3.11) will reduce to the sinc values at all the impulse locations, so 

that 

w w
w w

m msinc(t x) (x )dx = sinc(t )    ;   m [1, 2,..., ].
t t

∞

−∞

δ − ∈ ∞∫               (3.13) 

 

According to the results from Appendix A.2 these impulse locations are now located 

over the sinc zeroes for all the integer values of m between one and infinity 

 

w
w

msinc(t x) (x )dx = 0   ;   m [1, 2,..., ].
t

∞

−∞

δ − ∈ ∞∫                       (3.14) 

 

Thus the integral w
w

msinc(t x) (x )dx 
t

∞

−∞

δ −∫ is zero for all m [1, 2,..., ]∈ ∞ , which means 

that all the impulses are orthogonal to the sinc waveform. 

 

This means that OFDM sub-carriers are in fact orthogonal to each other, and that even 

though the individual sub-carrier bandwidths overlap with each other, they do not 

(under normal circumstances) interfere with each other. 
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3.4 Conclusions 

 

In this chapter the mathematics behind OFDM symbols were investigated, and 

complete mathematical representations of the OFDM symbols created, both in the 

time domain and the frequency spectrum. The important issue of orthogonality was 

introduced and sub-carrier orthogonality proved. In the next chapter the discrete-time 

domain is introduced as well as the reasons why it is used. Methods to convert 

continuous-time signals, like the mathematical expression from this chapter into 

discrete-time signals are also determined. It will thus be possible to start 

implementing OFDM encoders and decoders in a digital environment based on the 

mathematics derived in this chapter. 
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Chapter 4 
  

Encoding and decoding OFDM data 

symbols 
  

4.1 Introduction  

 

The encoding and decoding of single OFDM data symbols is a relatively easy process. 

Digital data is modulated/mapped onto OFDM sub-carriers in the frequency spectrum 

and then converted to the time domain (using the Inverse Fourier Transform) for 

transmission over the communications channel. OFDM decoding follows the same 

process but just in reverse: the received OFDM symbol is converted to the frequency-

domain using a Fourier Transform, and the sub-carriers are then demodulated to 

retrieve the original digital data. The digital implementation of an OFDM encoder and 

decoder differs somewhat from the methods described in the mathematical analysis, in 

that such an encoder and decoder resides in a digital environment and not in a 

continuous-time domain. It is thus important to first study how digital systems receive 

and process continuous-time signals, before we start describing the OFDM encoding 

and decoding processes. 

   

4.2 Analogue and Digital Domains 

 

Real-life signals or analogue signals are also called continuous-time signals and have 

continuous amplitude and time axes, which means that there is infinitely many points 

along both axes. Digital systems have only finite memory, and can thus only store 

signals in a discrete fashion. Digital systems convert continuous-time domain signals 

to discrete digital signals using devices called Analogue-to-Digital Converters (ADC). 

ADCs sample the incoming continuous-time signal at a constant rate, called the 

sampling frequency (Fs), and convert it to digital values, which the system can 

process and demodulate.  
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The sampling frequency is used to map the continuous-time signal to its discrete-time 

signal using the formula 

 

n n
S

nx(n) x(t );    t .
F

= =                                            (4.1) 

 

The amount of samples a certain continuous-time domain signal will occupy is 

calculated by 

( )( ) Signal SN signal time sampling rate t F  .= =                           (4.2) 

 

To convert discrete-time domain signals back to the continuous-time again we use 

devices called Digital-to-Analogue Converters (DAC) and lowpass (reconstruction) 

filters. 

 

 
 

Figure 4.1: The conversion of a continuous-time signal to a discrete-time signal. The 

top figure is a continuous-time sinusoidal signal, showing the sampling instants. The 

bottom figure is the equivalent discrete-time signal of the sinusoid.  
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The discrete-time domain acts very much like the continuous-time domain, which is 

good, because it means that all the Fourier transform pairs can be modified to work 

for both these domains. There are a few major differences of which one needs to be 

aware though. One very important difference between the continuous-time and 

discrete-time domain is that signal frequencies are always written relative to the 

sampling frequency, using the relationship 

 

c

S

f k .
F N

=                                                        (4.3) 

 

In the continuous-time domain,  is the signal frequency and  the sampling 

frequency. In the discrete-time domain, N is the amount of samples in the signal and 

Cf SF

k
N

 is the normalised discrete-time frequency of that signal. Another more obvious 

difference between the continuous-time domain and the discrete-time domain is that 

signals in the continuous-time use the “time” parameter, t, to describe signals, where 

discrete-time signals use the “sample” parameter, n, to describe signals. As an 

example, the continuous-time signal 

 

C Cs(t, f ) A cos(2 f t r(t)),= π +                                        (4.4) 

 

becomes the discrete-time signal 

 

ks(n, k) A cos(2 n r(n)).
N

= π +                                      (4.5) 

 

One other difference between the continuous-time domain and the discrete-time 

domain is that an integral in the continuous-time domain becomes a summation in the 

discrete-time domain.  For instance the Fourier Transform in the continuous-time 

domain: 

 

j 2  f  tX(f ) x(t)e  dt,
∞

− π

−∞

= ∫                                           (4.6) 
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becomes a Discrete Fourier Transform in the discrete-time domain 

 
kN 1 j 2   n
N

n 0
X(k) x(n)e    ;    (0<k<N).

− − π

=

=∑                                (4.7) 

 

It is thus possible to implement an OFDM encoder and decoder in a digital 

environment, still based on the original OFDM mathematics, by using the 

relationships between the continuous-time and the discrete-time domain as shown. 

 

4.3 Encoding OFDM Symbols 

 

Encoding OFDM symbols refers to the process of mapping and modulating digital 

data bits into an OFDM symbol. For this thesis all OFDM sub-carriers will be 

modulated using QPSK modulation. Some of the parameters of the encoding process 

must be calculated beforehand. 

 

The amount of samples needed to store an OFDM symbol is calculated as 

 

( )( )OFDM W SN rectangular window time sampling rate t F .= =              (4.8) 

 

The amount of QPSK sub-carriers within a single OFDM modulated symbol is 

and the digital bit capacity of a single QPSK modulated symbol is . The digital 

bit capacity of a single OFDM modulated symbol can be calculated as: 

SDN  

QPSKC

 

OFDM QPSK_1 QPSK_2 QPSK_3 QPSK_NsdC =C C C ... C ,+ + + +                       (4.9) 

 

which then becomes 

( )( )OFDM QPSK SDC = C N .                                          (4.10) 

 

The digital data bits for encoding is . IN OFDMB [ 1...C ]
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4.3.1 Encoding Single OFDM Symbols 

 

As already mentioned, the process of encoding OFDM symbols is done in the 

frequency domain. OFDM symbols with large amounts of sub-carriers could 

theoretically modulate each sub-carrier separately and add the results from each 

modulator together, to create an OFDM symbol, but there is an easier way. In the 

frequency domain, digital data bits are mapped to magnitudes and phase values, and 

placed at the correct positions in the frequency spectrum. Taking the IDFT of the 

frequency spectrum will produce the time domain signal. This time domain signal is 

then equivalent to encoding each sub-carrier separately, but it is much faster and 

easier. Figure 4.2 illustrates the process of encoding a single OFDM symbol. 

 

 
 

Figure 4.2: A graphical example of the single OFDM symbol encoding process. 
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Table 4.1 explains the OFDM symbol encoding process. 

 

Nr OFDM symbol encoding process 

*1 First the serial stream of input digital data bits are converted to a parallel 

stream, so that they can all be processed together. 

*2 Secondly the digital data bits are mapped to Amplitude and Phase values and 

placed at the correct locations in the frequency spectrum (The Modulation 

Process) 

*3 Thirdly the IDFT converts the frequency spectrum to a complex time domain 

signal, which can be transmitted. 

*4 Fourthly the parallel complex time domain signal is reconverted back to a 

serial stream. 

*5a, 

*5b 

Finally the real part of the complex time domain signal becomes the In-

Phase Signal a.k.a. the I-channel signal, and the imaginary part becomes the 

Quadrature-Phase Signal a.k.a. the Q-channel signal 

Output The final I- & Q-channel signals are then really to be transmitted over the 

communications channel. 

 

Table 4.1: The OFDM symbol encoding process 

 

4.3.2 Encoding Multiple OFDM Symbols 

 

OFDM symbols have the ability to encode many digital data bits, but the capacity of 

an OFDM symbol is still finite. The digital data capacity of each OFDM symbol is 

limited to the amount of sub-carriers within each symbol, as well as the amount of 

digital data bits encoded within each sub-carrier. In a practical system, one would 

often want to transfer large amount of data across the communications channel. If the 

amount of digital data bits is more than the capacity of a single OFDM symbol, the 

digital data is simply encoded across many OFDM symbols and transmitted over the 

channel. This is called an OFDM symbol train and can also be referred to as the 

OFDM data packet or the OFDM frame. 
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Such an OFDM symbol train can be seen as a series of sample-shifted OFDM 

symbols, expressed as 

 

TRAIN 0 1 OFDM 2 OFDM T 1 OFDMO (n) o (n) o (n N ) o (n 2N ) ... O (n (T 1)N )−= + − + − + + − −  

 

which becomes 
T 1

TRAIN k OFDM
k 0

O (n) o (n kN
−

=

= −∑ ).                                    (4.11) 

 

Figure 4.3 illustrates the multiple OFDM symbol encoding process. 

 

 
 

Figure 4.3: A graphical example of the multiple OFDM symbol encoding process. 

 

OFDM symbol trains can theoretically encode unlimited amount of data bits into 

unlimited OFDM symbols, and transmit it across the communications channel. 
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4.4 Decoding OFDM Symbols 

 

Decoding OFDM symbols refers to the process of de-mapping and demodulating the 

digital data bits from OFDM symbols.  

 

4.4.1 Decoding Single OFDM Symbols 

 

As with the encoding of single OFDM symbols, the decoding of single OFDM 

symbols is also done in the frequency domain, simply because it is easier and more 

convenient to do so. The complex time-domain signal is converted to the frequency 

spectrum using a DFT. Afterwards the phases and amplitudes of the sub-carriers at the 

different frequency locations are demodulated and de-mapped to digital data bits. The 

data bits are the result of the decoding process. Figure 4.4 illustrates the process of 

decoding a single OFDM symbol. 

 

 
Figure 4.4: A graphical example of a single OFDM symbol decoding process. 
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Table 4.2 explains the OFDM symbol decoding process. 

 

Nr OFDM symbol encoding process 

*1a, 

*1b 

Firstly the In-Phase and Quadrature-Phase signals are converted to a parallel 

stream so that they can be processed together. 

*2 Secondly the received complex time domain signal is converted to the 

frequency spectrum using a DFT 

*3 Thirdly the Amplitude and Phases of the sub-carriers at different frequencies 

are mapped and demodulated to digital data bits (The Demodulation Process) 

*4 Finally the digital data bits are converted to a serial output bit stream. 

Out- 

put 

The serial output bit stream is the result of the OFDM symbol decoding 

process, and can be passed to an upper layer application. 

 

Table 4.2: The OFDM symbol decoding process 

 

4.4.2 Decoding Multiple OFDM Symbols 

 

Receiving and decoding OFDM symbol trains is the most complicated part of an 

OFDM communications system. OFDM symbols exists as separate entities. Each 

OFDM symbol contains information about the bits it encoded only, and has no 

information about any adjacent OFDM symbols. An OFDM decoder thus needs to be 

synchronised to each received OFDM symbol. An unsynchronised OFDM decoder 

runs the risk of decoding only part of an OFDM symbol together with part of an 

adjacent OFDM symbol. This is called inter symbol interference and results in severe 

degradation in data quality. In order to create an efficient OFDM symbol train 

decoder, the issue of synchronisation together with other performance influencing 

issues needs to be addressed first. It is a major part of this thesis, of which a whole 

chapter is set aside to discuss and study it. Please refer to Chapter 5 for more details. 
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Figure 4.5 illustrates the multiple OFDM symbol decoding process. 

 

 
 

Figure 4.5: An OFDM decoder incorrectly decodes an OFDM symbol due to lack of 

OFDM symbol synchronisation. 

 

An OFDM symbol train decoder needs to be synchronised with the received OFDM 

symbol, in order to successfully decode OFDM symbols. 

 

4.5 Conclusions 

 

In this chapter we first discussed the differences between the continuous-time domain 

in which real-life analogue signals exists and the discrete-time domain in which 

digital systems process data. The conversion between the two is done using a digital-

to-analogue converter and an analogue-to-digital converter. Single OFDM symbol 

encoding and decoding was also studied, as well as encoding OFDM symbol trains. 

OFDM symbols are very sensitive to outside disturbances like noise, synchronisation 

and sampling frequency drift. These issues are discussed in the following chapter and 

needs to be overcome before we can design a successful OFDM symbol train decoder.  
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Chapter 5 
  

Identifying and Overcoming OFDM System 

Performance Influences  
  

5.1 Introduction 

 

The previous chapter showed us how to implement an OFDM encoder and how great 

amounts of data can be encoded across various OFDM symbols and transmitted over 

the communications channel. The process of decoding single OFDM symbols was 

also studied up to the point of decoding OFDM symbol trains. Decoding OFDM 

symbol trains is, to say the least, a very complicated matter. OFDM symbol trains are 

very finicky to disturbances and outside influences. This makes OFDM decoders very 

complicated and processor intensive, relative to normal single-carrier digital 

demodulators. Thus before describing the workings of a complete OFDM decoder, it 

is necessary to identify the factors which influence the performance of OFDM 

decoders. Only after identifying these real-life factors can we create means of 

overcoming them, and design an efficient OFDM decoder. 

 

5.2 System Performance Influences  

 

Identifying the main OFDM system performance influences caused by real-life factors 

and implementations is the first step in designing an efficient OFDM decoder. Here 

we discuss the six most important issues. 

 

5.2.1 Noise 

 

As already mentioned, noise is unwanted random interference that degrades the 

quality of signals. In Chapter 2 we analysed the influence of additive white Gaussian 

noise on QPSK modulated signals and derived expressions for determining symbol 

error rates (SER) and bit error rates (BER) of such systems.  
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We also know, from Chapter 3, that OFDM modulation, in its most basic form, is just 

a number of summed digitally modulated signals, all windowed using the same 

rectangular window. We can then ask the question: Can the expressions derived for 

single-carrier digitally modulated signals be adapted to work for OFDM modulation? 

The answer is YES, because OFDM sub-carriers are orthogonal to each other. 

Orthogonality ensures that OFDM sub-carriers remain independent of each other in all 

ways. This means that the effects of noise on OFDM modulated signals will be a 

direct result from the influence the noise has on the individual OFDM sub-carriers. 

The influence of noise on OFDM modulated signals can be determined as follows. 

 

The digital bit capacity of a single QPSK modulated symbol is . QPSKC

 

The BER of a single QPSK modulated symbol is . QPSKBER

 

The theoretical amount of error bits per QPSK symbol is ( )( )QPSK QPSK QPSKE = C BER . 

 

The amount of QPSK sub-carriers within a single OFDM modulated symbol is  SDN .

 

The digital bit capacity of a single OFDM modulated symbol is 

 

( )( )OFDM QPSK SDC = C N .                                            (5.1) 

 

The theoretical amount of error bits per - amount of QPSK symbols, is also the 

theoretical amount of error bits per single OFDM symbol  

SDN

 

( )( ) ( )( ) ( )( )OFDM QPSK_1 QPSK_1 QPSK_2 QPSK_2 QPSK_Nsd QPSK_NsdE = C BER C BER ... C BER+ + +  

 

which then becomes 

 

( )( )( )OFDM QPSK QPSK SDE = C BER N .                                   (5.2) 
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The BER of a single OFDM symbol can finally be calculated as the theoretical 

amount of error bits per OFDM symbol, divided by the total amount of digital data 

bits in a single OFDM symbol 

 

OFDM
OFDM

OFDM

EBER =
C

 ,                                             (5.3) 

 

which is 

 

( )( )( )
( )( )

QPSK QPSK SD
OFDM

QPSK SD

C BER N
BER =

C N
 

 

and finally becomes 

 

OFDM QPSKBER =BER .                                             (5.4) 

 

This means that the bit error rate of a single OFDM modulated symbol is equal to the 

bit error rate of any of the OFDM sub-carriers within the OFDM symbol, if all the 

sub-carriers use the same digital modulation. Since we have already deduced formulas 

to determine QPSK BER for different SNR values, those same graphs can be used as 

reference when testing the performance of our OFDM decoder later. 

 

Overcoming noise is not an easy task. All communication systems should strive to 

have an SNR that is as high as possible. This reduces the possibility of bit errors but 

would never guarantee completely error free transfers. In many radio communication 

devices, the SNR depends on many things, including the distance between the 

receiver and transmitter and the temperature of the radio circuitry components [11]. It 

is thus not always possible to maintain an exceptionally high SNR. Instead of trying 

to correct the source of the problem, it is sometimes better to see how one can correct 

the result of the problem, in this case a poor BER. In order to boost data link quality, 

systems use a technique called Forward Error Correction (FEC).  
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In short, FEC techniques can automatically correct faulty digital bits by adding extra 

FEC bits into the digital data stream. This increases transmission quality at the cost of 

reduced transmission speed. FEC is a large and complicated area of research, which 

will not be looked at for the purpose of this thesis. For more information about FEC 

techniques, please refer to [1,13,14]. 

 

5.2.2 OFDM Symbol Synchronisation Issues 

 

The most important step in successfully decoding an OFDM symbol train is the 

synchronisation of the OFDM decoder to the individual OFDM symbols within the 

OFDM symbol train. This is called OFDM symbol synchronisation. Successful 

synchronisation of an OFDM symbol train is achieved in two steps, the initial OFDM 

symbol train synchronisation [15] and the continuous re-synchronising of the OFDM 

data symbols [16,17]. 

 

5.2.2.1 Initial OFDM Symbol Synchronisation 

 

In order for an OFDM decoder to successfully decode an incoming OFDM symbol 

train, the OFDM decoder needs to be exactly synchronised with the OFDM symbols. 

An unsynchronised OFDM decoder runs the high risk of decoding information across 

two adjacent OFDM symbols, which would result in inter symbol interference and 

degradation in data quality. Final tests done on the OFDM decoder has confirmed that 

synchronisation is the one factor that effects the results of the decoder much more 

than any other factor, including noise. 

 

To overcome the issue of initial symbol synchronisation we introduce a new special 

OFDM symbol called the OFDM preamble symbol. The OFDM preamble symbol 

does not carry any encoded data and is purely used for synchronisation purposes. The 

OFDM transmitter transmits a short OFDM preamble train before the actual OFDM 

data train. The OFDM decoder knows the nature and exact structure of these OFDM 

preamble symbols and monitors the communication channel for the occurrence of 

these symbols. The OFDM decoder cross-correlates the received data with a local 

version of the OFDM preamble symbol. Cross-correlation can be described as a 
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measure of the similarity between two different data sets, computed by the sum of the 

cross products between the two datasets at different lags. When the OFDM preamble 

symbol train finally reaches the receiver, the cross-correlation will produce peak 

values, showing that there is a high similarity between the received signal and the 

local OFDM preamble symbol as shown in Figure 5.1. 

 

 
 

Figure 5.1: A graphical example of an OFDM decoder with initial OFDM symbol 

synchronisation. 

 

The result of the OFDM preamble train cross-correlated with the local OFDM 

preamble symbol, is a signal with periodic spikes showing the location of each of the 

OFDM preamble symbols in the transmission. By examining these peaks in the cross-

correlation result, it is possible to exactly determine the start location and boundary of 

each OFDM preamble symbol, as well as the start location of the following OFDM 

data symbol train. The OFDM decoder will thus be able to synchronise to the OFDM 

symbols. A decoder’s local OFDM preamble symbol is given by .  r_LOCALP (n)
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The OFDM preamble symbol is  samples in length. The amount of OFDM 

preamble symbols in an OFDM preamble train is . An OFDM preamble symbol 

train can then be expressed as 

PN

NP

 
NP 1

Train r P
k 0

P (n) P (n kN )
−

=

= −∑ .

.

                                        (5.5) 

 

The cross-correlation between the OFDM preamble symbol and a received signal is 

 

 Pr,Rx x r _ LOCAL
n

r (k) R (n) P (n k)
∞

=−∞

= −∑                                  (5.6) 

 

If the OFDM decoder then receives an OFDM preamble symbol train 

 
Pn 1

x Train r
s 0

R (n) P (n) P (n sN ),
−

=

= = −∑ P

,−

.−

                                 (5.7) 

 

the cross-correlation between a local receiver’s OFDM preamble symbol and a 

received OFDM preamble train thus becomes 

 
Pn 1

Pr,Rx r _ LOCAL r P
n s 0

r (k) P (n k) P (n sN )
∞ −

=−∞ =

= −∑ ∑                           (5.8) 

 

which can be rewritten as 

 
Pn 1

Pr,Rx r _ LOCAL r P
n s 0

r (k) P (n k) P (n sN )
∞ −

=−∞ =

= −∑ ∑                           (5.9) 

 

Since cross-correlation measures the similarity between two datasets, the strongest 

correlation will occur whenever the decoder’s OFDM preamble symbol is aligned 

with each of the received OFDM preamble symbols within the OFDM preamble train.  
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From Equation (5.9) we can see that that this happens when the position of the 

decoders’ local OFDM preamble is equal to the location of the received OFDM 

preambles so that 

 

Pk sN ;      0 s P 1.n= ≤ ≤ −                                        (5.10) 

 

This means that the peaks will occur at position of a received OFDM preamble 

symbol as given by (5.10). For a perfect channel, r_LOCAL rP (n) P (n)= . The following 

figure shows the cross-correlation peaks located at the rear of each received OFDM 

preamble symbol. 

 

 
 

Figure 5.2: A graphical example of initial OFDM symbol synchronisation results 

using cross-correlation. 

 

By detecting the periodicity of the peaks produced by the cross-correlation of a 

receivers’ local OFDM preamble symbol and the received OFDM preamble train, it is 

possible to determine the position of each OFDM preamble symbol and thus calculate 

the start location of the following OFDM data symbols, and synchronise on it. 
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5.2.2.2 Continuous re-synchronisation of OFDM data symbols 

 

Communications systems use oscillators to generate clock signals for timings that 

control the systems’ sampling frequency. Impurities in the physical makeup of the 

oscillators results in sampling frequency drift. These impurities are measured in “parts 

per million” or PPM. As example, a system running at 20kHz, with a oscillator which 

has a 50 PPM rating, could in actual fact be anything between 

 

20 000Hz *(1 50PPM) 19 999Hz− =  

and 

20 000Hz *(1 50PPM) 20 001Hz.+ =  

 

This means that a system which expects 20 000 samples per second, could in actual 

fact be out with at least 1 sample after 1 second. This is called sampling frequency 

drift. The OFDM symbols are usually only a few samples in length and the effects of 

the sampling frequency drift aren’t easily observable. This is because the effects are 

sub-sample in size, which means that an OFDM symbol will become de-synchronised 

in parts that is smaller that one actual sample. Although this is a very small value, to a 

system such as an OFDM decoder, which depends on absolute synchronisation, it 

could severely influence the quality of data.  In the long run the effects would become 

worse and worse and finally result in a completely de-synchronised OFDM decoder. 

The difference in sampling frequency can be expressed as 

 

S SF (decoder) F (transmitter) F .S= + Δ  

 

Except for the long-term de-synchronisation effect of the sampling frequency drift, 

the sub-sample shifts in OFDM symbols also causes degradation in data quality due to 

the following Fourier transform pair 

 

O
kj2 nFFT N

Oo(n n )  O(n)e .
− π

− ⎯⎯⎯→                                  (5.11) 
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The Fourier transform above states that any signal which is delayed by a value , be 

it sub-sample or super-sample in size, directly influences the phases of all the 

frequency components inside that signal. The phase influence becomes worse as the 

frequencies increase. For systems such as the OFDM encoders that encode the digital 

data into sub-carrier phases, this is a major problem. See Figure 5.3. 

On

 

The effects of the sampling frequency drift are overcome by using reference carriers, 

also called virtual carriers. Reference carriers are placed at different frequency 

positions throughout the OFDM symbol, and they all carry constant phases 

throughout the whole OFDM symbol train transmission. The OFDM decoder knows 

the positions and nature of these reference carriers.  

 

In order for an OFDM decoder to compensate for the effects of possible sampling 

frequency drift, the OFDM decoder, upon receiving an OFDM symbol for decoding, 

first decodes the reference carriers. 

 

 
 

Figure 5.3: OFDM symbol de-synchronisation due to sampling frequency drift. 
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The OFDM decoder knows the expected reference carrier phases and frequency 

positions. The receiver can thus compare the received reference phases with the 

expected reference phases. If there is a difference, the receiver will immediately know 

that some sort of sample delay has occurred. 

 

The expected reference carrier with digital frequency k and phase kφ can be expressed 

as 

kO(n,k) O(n,k) .= ∠φ                                           (5.12) 

 

The influence of a sample delay from (5.11) is 

 

O
kj2 n
N

O
ke 1 (2
N

− π
= ∠ π n ).                                       (5.13) 

 

The received reference carrier with a sample delay becomes 

 

( )O
kj2 n
N

k
kO(n,k)e O(n,k) 1 (2 n )
N

− π ⎛= ∠φ ∠ π⎜
⎝ ⎠

O
⎞
⎟                     (5.14) 

 

which gives 

 

O
kj2 n
N

k
kO(n,k)e O(n,k) 2 n .
N

− π ⎛= ∠ φ + π⎜
⎝ ⎠

O
⎞
⎟                         (5.15) 

 

The phase difference between the expected and received reference carrier is thus 

 

O
k2 n
N

φ = π� .                                                (5.16) 
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Since the index value, k, the symbol size, N, and the reference carrier phase difference 

is known, after some precise phase unwrapping, the sample offset can be calculated as 

 

O
Nn
2 k

.φ⎛= ⎜ π⎝ ⎠
� ⎞
⎟                                                  (5.17) 

 

After the sample offset has been calculated, (5.13) can be used to calculate the phase 

offset at all the data carriers. The phase offsets can then be subtracted from all the data 

carriers, to retrieve the original phase values. This is called reference carrier phase 

compensation. 

 

It is very important to note that the reference carriers too, can be influenced by system 

noise. A noisy and incorrect reference can cause the decoder to incorrectly calculate 

the sample offset and incorrectly compensate all the data sub-carrier phases in the 

symbol. It is suggested that in practice more than one reference carrier is used and a 

mean or weighted decision from all the reference carriers be used when determining 

the sample offset.  

 

If one can assume that the system oscillator characteristics do not change drastically 

between OFDM symbols, it is further possible to keep a record of sample offsets 

between OFDM symbols. The result would be a steady increase or decrease in the 

sample offset (which, if left unattended, would result in decoder de-synchronisation), 

which could be used to determine the rate of change in sample offset. Future expected 

sample offsets could be calculated and used to test against suspicious sample offset 

outliers. 

 

When the sub-sample offset has reached the point where it is the size of an actual 

sample, the decoder can just skip or delay one sample to get the decoder precisely 

synchronised again. 
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5.2.3 Multipath Effects on OFDM symbols  

 

Multipath delay is a phenomenon which occurs when signals are transmitted and 

received using electromagnetic waves [5,18,26]. The quickest way for a transmitted 

signal to travel between a transmitter and a receiver is in a straight line, but non-

directional antennae transmit signals in different directions. Sometimes it happens that 

transmitted signals reflect off objects and still reach the receiver. Due to the longer 

distance these signals travel, they reach the receiver later than a direct line-of-sight 

signal, and with a smaller amplitude. These multipath signals (also known as delay 

spread) cause delayed versions (a time-domain smearing effect) of the original signal 

to occur at the receiver. Such an arbitrary transmitted signal can be expressed as 

 

Tx(t) As(t).=                                                 (5.18) 

 

The multipath received signal can then be expressed as a number of summed delayed 

versions of the original signal, with different amplitudes 

 

1 1 E1 1Rx(t) Bs(t T ) Cs(t (T T )) Ds(t (T T )).= − + − + + − + E2               (5.19) 

 

As we have already stated, OFDM symbols exist as separate entities of limited length. 

A delayed OFDM symbol will thus overflow the original OFDM symbol boundaries 

into the following OFDM symbol and cause inter-symbol interference. 

 

The effects of multipath delay are overcome by cyclically extending the OFDM 

symbol, by copying the rear part of the OFDM symbol and pasting it to the front of 

the symbol. The front of the new extended OFDM symbol can thus absorb the delayed 

copies from the previous symbol and still keep the original OFDM symbol data 

unaltered. This is called the Cyclic Prefix or Guard Interval of the symbol. 
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Figure 5.4: Multipath effects causes delayed signals to reach the receiver. 

 

Choosing the length of the guard interval is an interesting subject. The guard interval 

should be long enough to absorb all the major delay spread. Making the guard interval 

too long, on the other hand, wastes precious transmission time. It finally comes down 

to the typical environment the system is going to be used in, and the types of 

multipath signals the system has to deal with. Multipath fading is a large and 

complicated area of study. OFDM sub-carriers have long symbol periods and small 

bandwidths, which are assumed to be flat fading channels. This removes the need for 

any complicated channel equalisations. In the case of OFDM, guard intervals are 

sufficient countermeasure for delay spread. The guard interval for an IEEE 802.11a 

based system is 800 ns, according to the specifications [1]. Figure 5.5 illustrates the 

effects of delay spread on OFDM symbols and how guard intervals are used to 

combat it. 
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Figure 5.5: The effects of delay spread and use of guard intervals 

 

5.2.4 Peak-to-Average Power Ratio 

 

The Peak-to-Average Power Ratio (PAPR) is a way of measuring the ratio between 

the peak power of a signal and its average power [5,19,20]. For OFDM modulated 

signals, where the signal basically consists of a number (NST) of summed sub-carriers, 

it is possible for parts of the signal to add constructively and produce peaks that is NST 

times larger than the average signal level.  For instance, if n IEEE 802.11a based 

system has a total of NST=52 sub-carriers, the PAPR of the OFDM signal can be 

calculated as  
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( )dB 10 STPAPR 10log N ,=                                        (5.20) 

 

which gives 

 

( )dB 10PAPR 10log 52 17.16dB.= =                                 (5.21) 

 

A large PAPR is a disadvantage to a system, and has a major influence on the 

dynamic range of the system as well as the transmitter amplifier. 

 

5.2.4.1 OFDM Dynamic Range Issues 

 

As explained in Chapter 4, digital systems store data in a discrete fashion. Digital data 

bits are used to represent digital values and the more bits are used, the bigger the 

value it can store. Continuous-time signals have amplitudes that get mapped to digital 

amplitude values. The ADCs quantise the analogue values to the nearest digital data 

value it can represent. The more bits used to store these digital amplitude values, the 

finer the resolution of the amplitudes, and thus a more detailed signal. Popular 

quantising levels are 8, 12 and 16 bits, but can go as high as 24 and 32 bits. Signals 

with high PAPR values, like OFDM signals, have high peaks that are located 

relatively far from the majority of signal activity. Since the whole signal needs to be 

mapped to digital values, many of the available bits are “wasted” because they’re only 

there to fill the range between the peak and the major signal activity. It is thus 

possible for signals with very high PAPR values to start losing signal resolution, 

which in terms leads to quantising noise, and a degradation of the data quality. 

 

5.2.4.2 Transmitter Amplifier Issues 

 

A high PAPR becomes an issue when one attempts to transmit the OFDM signals 

over the air using electromagnetic waves. The analogue front-end utilises a power 

amplifier that amplifies the OFDM signal to required levels before transmitting it 

using an antenna. A power amplifier is not inherently linear, but it is made linear by 

utilising linear areas of operation within the amplifier. The power amplifier must thus 
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provide gain for every peak level within the signal without warping the signal because 

of these non-linear regions. Warping of the OFDM signals will negatively effect the 

quality of the signal and the resulting bit error rate. A high PAPR will result in the 

power amplifier providing less power to the signals between the peaks.  The DC 

power consumption of power amplifiers is determined by their peak power, which 

means that OFDM power amplifiers could also be dramatically inefficient. 

Minimising the PAPR allows a higher average power to be transmitted for a fixed 

peak power, improving the overall signal-to-noise ratio at the receiver.  

 

Overcoming the effects of a high PAPR is not a very straightforward task. Some 

methods include the use of peak reduction carriers [21] where additional OFDM sub-

carriers are added to the OFDM symbol, specially encoded to reduce peaks in the 

OFDM symbol. Another method of reducing PAPR is by clipping [22] the OFDM 

symbol at certain levels and then counteracting the clipping effects by the use of 

special filters. 

 

5.2.5 Communications Channel Estimation 

 

Channel estimation is the process where the influence of the communication channel 

on the transmission signal is estimated, in order to predict the received signal, or to 

counteract its effects [23]. A communication channel, be it a copper wire or radio 

waves, will sometimes differently attenuate different frequencies in the transmission 

signal. Such attenuation can be a result of the physical characteristics of the 

communications channel as well as many other things. The channel transfer function 

is a transform, which can be used to describe the output of a system as a function of 

the input. Digital demodulators such as ASK and QAM demodulators which decode 

digital data as a function of the magnitude of the received signal at certain 

frequencies, run the risk of incorrectly decoding the data if it happens that the channel 

is attenuated at the decoding frequencies. The channel transfer function can be 

expressed in terms of the Laplace transform, which basically operates in the frequency 

domain.  
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The transmitted signal  is transformed into the received signal  by means of 

the transfer function , by 

X(s) Y(s)

H(s)

 

Y(s) H(s)X(s).=                                               (5.22) 

 

The transfer function can be expressed as 

 

YH(s) (s).
X

=                                                  (5.23) 

 

One way to counteract the effects of the channel transfer function is for the receiver to 

transform the received signal by the inverse channel transfer function . The 

inverse channel transfer function can be calculated as 

1H (s)−

 

1 XH (s) (s).
Y

− =                                                (5.24) 

 

The received signal can then be transformed using the inverse channel transfer 

function, to produce a new output 

 
1

2Y (s) Y(s)H (s),−=                                            (5.25) 

 

which then becomes the original input signal 

 

1
2

Y XY (s) H(s)X(s)H (s) (s)X(s) (s) X(s).
X Y

−= = =                     (5.26) 

 

In order for the receiver to counteract the effect of the channel transfer function the 

receiver needs to know what the original input signal was. A perfect candidate for 

channel estimation is the OFDM preamble symbol.  
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During the initial symbol synchronisation process, the Laplace Transform or Fourier 

transform can convert the local preamble symbol  and the received 

preamble symbol,  (after successful synchronisation) to their respective spectra. 

The inverse channel transfer function will then be 

r _ LOCALP (n)

rP (n)

 

r _ LOCAL1

r

P (s
H (s) .

P (s)
− =

)
                                           (5.27) 

 

Any signal received thereafter can then be transformed using the inverse channel 

transfer function, but it should be noted that it is possible for the characteristics of the 

channel to change in the long term, and thus the channel transfer function will change 

as well. It is thus suggested that the transfer function be updated on a regular basis 

during long periods of communications. 

 

The time-domain representation of the channel transfer function is called the channel 

impulse response , and can be defined as the response of a system to an impulse 

as input signal. The impulse response of a communications channel is basically 

responsible for limiting instantaneous change in signals. This has an effect on OFDM 

encoded signals, since every following OFDM data symbol is a new signal. The result 

is a distortion of the front part of each new OFDM symbol and the digital data it 

carries. 

h(n)

 

One method of overcoming this distortion is by cyclically extending the OFDM data 

symbol in the front. The cyclic extension keeps the OFDM symbol periodic, and if the 

cyclic prefix is longer than the impulse response it will keep the original OFDM 

symbol unaltered. The cyclic prefix has already been introduced in combating 

multipath effects, and is now further crucial in combating the effects of 

communication channel impulse response. 
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5.2.6 System Performance Influences Conclusions 

 

The six most serious system performance influences have been determined as  

• Additive white Gaussian noise. 

• Initial OFDM symbol synchronisation at the receiver. 

• Continuous OFDM symbol re-synchronisation due to system oscillator 

impurities. 

• Multi-path fading effects on OFDM symbols. 

• PAPR issues with high sub-carrier count OFDM systems. 

• Communication channel estimation and compensation. 

 

After extensively examining each of these performance influencing factors, and 

determining means to overcome them, it is now possible to design a effective OFDM 

receiver system. 

 

5.3 Advanced System Performance Improvements  

 

There exist a few additional, and more complex techniques, which can improve 

OFDM system performances. These advanced improvements are more specialised in 

nature and their performance improvements not always guaranteed. 

 

5.3.1 Data Interleaving 

 

Data interleaving is the process where by the digital data bits are encoded to random 

OFDM sub-carriers[1,3,6,12]. Continuous narrow-band interference of the OFDM 

signal by external devices, cause bursts of errors in the decoded data stream. 

Unfortunately forward error correction schemes are not so effective in correcting 

bursts of errors. By placing the encoded data bits at random OFDM sub-carriers, 

bursts of erroneous data bits become more random in nature, and thus improve the 

correcting ability of the forward error correction scheme. 
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5.3.2 Sub-carrier Adaptive Bit Loading 

 

Adaptive bit loading is a technique where each OFDM sub-carrier modulation scheme 

is determined by the quality of that OFDM sub-carrier [12,24]. OFDM sub-carriers 

with high SNR can be given more power and higher-order modulation techniques. 

Lower-order modulation techniques are assigned to OFDM sub-carriers with poor 

SNR. Sub-carriers with very bad SNR can even be turned off. Adaptive bit and power 

loading can improve system efficiency and optimise data performance of the system. 

 

5.3.3 Spatial Multiplexing Techniques 

 

Spatial multiplexing [25], also known as MIMO or Multiple-In Multiple-Out 

techniques, attempts to increase transmission signal strength by increasing the amount 

of antennae at the transmitter and receiver. Multipath fading at two different antennae 

could be uncorrelated over the two different transmission paths. Combining these 

received signals will result in a SNR higher than the SNR in any of the individual 

signals. Higher SNR will result in better data quality and lower BER. 

 

5.4 Conclusions 

 

In this chapter we have introduced and studied the six primary OFDM system 

performance influences.  Methods for overcoming them have also been discussed in 

detail. Any OFDM receiver will need to implement them in order to operate at 

reasonable performance levels. There exist some further advanced methods for 

improving system performance. These methods do not guarantee improvements and 

can come at the price of increased processing power or extra hardware. In the next 

chapter we study the IEEE 802.11a standard of OFDM encoding. The IEEE 802.11a 

standard is very robust, and incorporates many of the methods described in this 

chapter for overcoming the OFDM system performance influences. The SDR 

implementation of the OFDM transceiver system is also based on the IEEE 802.11a 

standards. 
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Chapter 6 
  

IEEE 802.11a OFDM standard 
  

6.1 Introduction 

 

The Institute of Electrical and Electronic Engineers, also known as the IEEE, is a non-

profit, technical professional association with hundreds of thousands of members from 

approximately 175 countries. Through its members, the IEEE is a world leading 

authority in many technical areas, including telecommunications. The IEEE has over 

37 societies that specialise in different technologies and creates standardised rules 

based on these existing and new technologies. The standardisation of technologies 

give different companies the chance to produce compatible products that results in 

competitive markets for their products. The IEEE 802.11 standard is an evolving 

family of specifications for the wireless transmission of local area networks. The 

IEEE 802.11a standard is an enhancement of the IEEE 802.11 standard and is tailored 

for use in high-speed access hubs operating in the frequency range 5.725 GHz to 

5.850 GHz [1]. 

 

6.2 The IEEE 802.11a Standard 

 

The IEEE 802.11a standard incorporates OFDM modulation to encode digital data 

bits onto 64 sub-carriers spanning across 20 MHz of bandwidth to provide 

transmission of data at rates of 6, 9, 12, 18, 24, 36, 48, or 54 Mbps. The standard 

incorporates methods for overcoming virtually all the real-life performance influences 

we have discussed in previous chapters, and the result is a robust system based on 

OFDM modulation for the wireless transmission of computer network data.  

 

6.2.1 The IEEE 802.11a Standard Overview 

 

Some of the features that the IEEE 802.11a standard incorporates: 

• Short and Long preamble symbols for initial symbol synchronisation. 
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• Cyclic extended data symbols to combat multipath fading effects. 

• Reference carriers within each data symbol for continuous re-synchronisation. 

• Convolutional encoding forward error correction to combat noise effects. 

• Bit interleaving for added error correction efficiency. 

 

Four different IEEE 802.11a symbol types exist: 

• Short Preamble Symbols 

• Long Preamble Symbols 

• OFDM Signal Symbol 

• OFDM Data Symbol 

 

The IEEE 802.11a data symbol specifications are: 

• 48 sub-carriers used for encoding data. 

• Sub-carrier encoding options: BPSK, QPSK, 16-QAM and 64-QAM. 

• 4 sub-carriers used as reference carriers. 

 

The IEEE 802.11a packet is made up of 10 short preambles followed by 2 cyclically 

extended long preambles, a signal symbol and then a maximum of 4096 data symbols, 

as shown in Figure 6.1. 

 

 

 
 

Figure 6.1: An IEEE 802.11a standard packet format 
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The IEEE 802.11a OFDM symbols use a total of 20MHz bandwidth, which is divided 

into 64 subcarriers spaced 312.5 kHz apart. Only the first 52 sub-carriers are used, of 

which 48 are used for data and the 4 as reference carriers. Refer to Table 6.1 for detail 

timing parameters of the IEEE 802.11a system [1]. 

 

Parameter Value 

BBW: OFDM symbol bandwidth 20 MHz 

NOFDM: Total amount of OFDM sub-carriers 64 

ΔF: Sub-carrier frequency spacing 0.3125 MHz (20MHz/64) 

NST: Number of Used sub-carriers 52 (NSD + NSP) 

NSD: Number of Data Sub-carriers 48 

NSP: Number of Pilot (Reference) Sub-carriers 4 

TFFT: IFFT/FFT Period 3.2 us (1 / ΔF) 

TGI: GI (Cyclic Prefix) Duration 0.8 us (TFFT /4) 

TSYM: Complete Symbol Timing (FFT+CP) 4.0 us (TFFT + TGI) 

TGI2: Cyclic prefix for Long Preambles 1.6 us  (TFFT /2) 

TLONG: Long Preamble Sequence 8.0 us (2xTFFT + TGI2) 

TSHORT: Short Preamble Sequence 8.0 us (10xTFFT /4) 

 

Table 6.1: IEEE 802.11a timing parameters. 

 

The IEEE 802.11a transmission time can thus be calculated as 

 

( )( )802.11 LONG SHORT SYM SYMT T T T (signal) number of OFDM packets T= + + +   (6.1) 

 

which is 

( )( )802.11T 20us number of OFDM packets 4us .= +                       (6.2) 

 

It is further possible to calculate the “over-the-air” data rate of an IEEE 802.11a 

system by choosing different sub-carrier modulation schemes as well as different 

convolutional coding rates. Refer to Table 6.2 for the data rate dependent parameters. 
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Data rate 

Megabits/s 

Sub-carrier 

Modulation 

Coding rate 

Convolution

Total Bits / 

sub-carrier

Total Bits / 

symbol 

Data Bits 

/symbol 

6 BPSK 1/2 1 48 24 

9 BPSK 3/4 1 48 36 

12 QPSK 1/2 2 96 48 

18 QPSK 3/4 2 96 72 

24 16-QAM 1/2 4 192 96 

36 16-QAM 3/4 4 192 144 

48 64-QAM 2/3 6 288 192 

54 64-QAM 3/4 6 288 216 

 

Table 6.2: Data rate dependent parameters of an IEEE 802.11a system 

 

A 64-point IFFT or IDFT function converts the spectrum into complex time domain-

signals. The complex frequency-domain coefficients used to describe the different 

OFDM time signals have indices that range from –26 to 26. These indices map onto 

the IDFT block as shown in the Figure 6.2. 

 

 
 

Figure 6.2: An IEEE 802.11a IDFT/IFFT function block 
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At a sampling rate of 20 MSPS an IEEE 802.11a IDFT function block will produce 

complex time domain signals of exactly 3.2 us duration. This is referred to as  FFTT .

 

6.2.2 The IEEE 802.11a Short Preamble Symbol 

 

The IEEE 802.11a short preamble symbol train make up the first half of the PLCP 

preamble, and is exactly 8 microseconds in duration. Each short preamble symbol can 

be described using the series of complex DFT coefficients 

 

( )26,26s 13 6 {0,0,1 j,0,0,0, 1 j,0,0,0,1 j,0,0,0, 1 j,0,0,0,...− = × + − − + − −

..., 1 j,0,0,0,1 j,0,0,0,0,0,0,0, 1 j,0,0,0, 1 j,0,0,0,1 j,...− − + − − − − +  

...,0,0,0,1 j,0,0,0,1 j,0,0,0,1 j,0,0}.+ + +                              (6.3) 

 

The complex time-domain signal is then generated using the Equation (6.4), 

 

( )
ST

F

ST

N 2
j 2  k   t

SHORT TSHORT k
k N 2

r (t) w (t) S e π Δ

=−

= ⋅∑                           (6.4) 

 

where  is the symbol windowing function. TSHORTw (t)

 

The short preamble symbol complex coefficients have non-zero values at every fourth 

index, which results in a signal  that has a periodicity of SHORTr (t) FFTT 4 0.8us= . It is 

thus possible to construct the short preamble train by adding two short preamble 

symbols together with one half concatenated symbol, and for the resulting short 

preamble train to still remain periodic over the entire duration. 
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Figure 6.3: The IEEE 802.11a short preamble train. 

 

The short preamble train has a total duration of 

 

( ) ( )SHORT FFT FFTT 2 T 0.5 T= + ,                                         (6.5) 

 

( ) ( )SHORTT 2 3.2us 0.5 3.2us 6.4us 1.6us 8.0us.= + = + =                   (6.6) 

 

The short preamble train can finally then be expressed as 

 

SHORT _ TRAIN SHORT SHORT SHORT SHORT _ CONCAT SHORTr (t) r (t) r (t T ) r (t 2T ).= + − + −%     (6.7) 

 

 

6.2.3 The IEEE 802.11a Long Preamble Symbol 

 

The IEEE 802.11a long preamble symbol train make up the second half of the PLCP 

preamble, and is exactly 8 microseconds in duration. Each long preamble symbol can 

be described using the series of complex coefficients 
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26,26L {1,1, 1, 1,1,1, 1,1, 1,1,1,1,1,1,1, 1, 1,1,1, 1,1, 1,1,1,1,1,0,1, 1, 1,...− = − − − − − − − − − −  

...,1,1, 1, 1, 1,1, 1, 1, 1, 1, 1,1,1, 1, 1,1, 1,1, 1,1,1,1}− − − − − − − − − − − − .             (6.8) 

 

The complex time domain signal, is then generated using Equation (6.9), 

 

( )
ST

F GI 2

ST

N 2
j 2  k   ( t T )

LONG TLONG k
k N 2

r (t) w (t) L e π Δ −

=−

= ⋅∑                        (6.9) 

 

where  is the symbol windowing function. TLONGw (t)

 

Each long preamble symbol has duration of . The final long preamble train is then 

constructed by adding two long preambles symbols together with a cyclic prefix of the 

long preamble also known as the long preamble guard interval of . The long 

preamble guard interval is exactly half the length of the long preambles 

FFTT

GI2T

 

LONG FFT GI2T 2T T ,= +                                            (6.10) 

 

LONGT 6.4us 1.6us 8.0us.= + =                                    (6.11) 

 

The long preamble train can finally then be expressed as 

 

LONG _ TRAIN LONG LONG SHORT LONG _ GUARD _ INTERVAL SHORTr (t) r (t) r (t T ) r (t 2T ).= + − + −%  (6.12) 
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Figure 6.4: The IEEE 802.11a long preamble train. 

 

6.2.4 The IEEE 802.11a Signal Symbol 

 

The IEEE 802.11a signal symbol is a special symbol that is encoded with information 

about the current transmission. The signal symbol carries information about the 

amount of OFDM data symbols and their data rates. The 24-bit signal is encoded 

using a Convolutional encoding rate of ½ to produce a 48-bit value. This 48-bit signal 

value is mapped with BPSK to the 48 OFDM sub-carriers to generate the OFDM 

signal symbol. The signal symbol bit assignment is shown below: 

 

 
Figure 6.5: The IEEE 802.11a signal symbol bit assignment 
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The 4-bit rate value contains information about the current data rate of the encoded 

transmission. Using Table 6.3 together with Table 6.2, it is then possible to exactly 

determine the data rate as well as the convolutional encoding rate of the transmission. 

Bit 4 is reserved for future use and bit 17 is an even parity for bits 0 – 16. The signal 

tail field is set to zero. 

 

Rate (Megabits/s) R1-R4 Rate (Megabits/s) R1-R4 

6 1101 24 1001 

9 1111 36 1011 

12 0101 48 0001 

18 0111 54 0011 

 

Table 6.3: Contents of the IEEE 802.11a Signal Field 

 

6.2.5 The IEEE 802.11a Data Symbol 

 

The process described in Table 6.4 generates an IEEE 802.11a data symbol. 

 

Nr Action 

1 The digital data set intended for transmission is passed to a convolutional 

encoder; the result is a data set combined with error correction data. 

2 The digital data bits are the mapped to complex coefficients using the 

appropriate sub-carrier modulation method. 

3 The complex coefficients are mapped to the correct frequency spectrum 

locations. 

4 The reference sub-carriers complex coefficients are added to the correct 

frequency spectrum locations. 

5 The resulting complex coefficients are converted to a time domain signal using 

the IDFT function block 

6 A Guard Interval (Cyclic Prefix) is added to the signal 

7 The resulting symbol is buffered and prepared for transmission by the hardware. 

 

Table 6.4: IEEE 802.11a Data Symbol generation process 
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6.2.5.1 Convolutional encoding of the digital data 

 

The convolutional encoding of the digital data is not looked at for the purpose of this 

thesis; please refer to Section 17.3.5.5 of the IEEE 802.11a Part 11 specifications [1]. 

 

6.2.5.2 Mapping Digital Data Bits to Complex Coefficients 

 

Digital data bits are mapped to complex coefficients using BPSK, QPSK, 16-QAM or 

64-QAM modulation. Refer to Appendix B for detail about the mapping process. The 

results of the digital modulation is a series of SDN 48=  complex coefficients denoted  

0,47D . 

 

6.2.5.3 Mapping the Complex Coefficients to the Frequency Spectrum Locations 

 

The complex coefficients  are then mapped to a new series of complex 

coefficients denoted as  using the mapping function  where 

0,47D

26,26B− M(k)

 

k 26;    0 k 4
k 25;     5 k 17
k 24;   18 k 23

M(k) .
k 23;    24 k 29
k 22;   30 k 42
k 21;    41 k 47

− ≤ ≤⎧ ⎫
⎪ ⎪− ≤ ≤⎪ ⎪
⎪ ⎪− ≤ ≤

= ⎨ ⎬− ≤ ≤⎪ ⎪
⎪ ⎪− ≤ ≤
⎪ ⎪

− ≤ ≤⎩ ⎭

                                  (6.13) 

 

6.2.5.3 Adding the Reference Carriers  

 

The contribution of the reference carriers are given by the following series of complex 

coefficients 

 

26,26P {0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0...− =  

...,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0}.−                       (6.14) 
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Finally, the complex coefficients which will be converted to a time-domain signal are 

given by  

26,26 26,26 26,26C B P− − − .= +                                          (6.15) 

 

6.2.5.4 Converting the Data Symbol to a Time-Domain Signal 

 

The complex time-domain signal is then generated using Equation (6.16), 

 

( )
ST

F

ST

N 2
j 2  k   t

DATA TDATA k
k N 2

r (t) w (t) C e π Δ

=−

= ⋅∑                          (6.16) 

 

where  is the symbol windowing function. TDATAw (t)

 

6.2.5.5 Completing the Data Symbol by Adding a Guard Interval 

 

The complex time domain data symbol is finalised by adding a guard interval to the 

front of the OFDM symbol. The guard interval (cyclic prefix) is exactly ¼ of the 

length the OFDM symbol 

 

SYM GI DATA GIr (t) r (t) r (t T ).= + −                                     (6.17) 

 

6.2.6 Transceiving the IEEE 802.11a Packets 

 

After an IEEE 802.11a packet is generated, it is ready to be transmitted over the 

communications medium. For systems transmitting the IEEE 802.11a packets over the 

air using electromagnetic waves, special precaution must be taken to abide by the 

rules and regulations on transmission power levels for the relevant country. The final 

IEEE 802.11a (where CPACKETS is the amount of OFDM data carriers) can be 

expressed using Equation (6.18), 
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IEEE _802.11a SHORT _ TRAIN LONG _ TRAIN SHORT SIGNAL LONG SHORTr (t) r (t) r (t T ) r (t (T T= + − + − + ))

.

 

PACKETC 1

SYM LONG SHORT SYM SYM
n 0

r (t (T T T ) nT )
−

=

+ − + + −∑                     (6.18) 

 

The complete IEEE 802.11a OFDM packet signal rIEEE_802.11a(t) can now be 

transmitted over the communication channel. 

 

6.3 Conclusions 

 

In this chapter we discussed the IEEE 802.11a standard of implementing an OFDM 

transceiver system. An IEEE 802.11a OFDM packet or frame consists of a long 

preamble train followed by a short preamble train, a signal symbol and then the 

OFDM data symbol train. The IEEE 802.11a standard incorporates many of the 

methods described in the previous chapter on combating the real-life factors 

influencing performance. The IEEE 802.11a long and short preambles are used for 

initial OFDM symbol synchronisation as well as communication channel estimation 

and determining sampling frequency drift. The IEEE 802.11a signal symbol contains 

information about the length and the encoding methods used in the current 

transmission. The IEEE 802.11a data symbols have 48 usable sub-carriers for 

encoding actual data and 4 reference carriers used for phase compensation and 

continuous re-synchronisation of the OFDM data symbols. Each OFDM data symbol 

has a guard interval used in combating the effects of the channel impulse response as 

well as multipath delays. The IEEE 802.11a standard further incorporates a forward 

error correction scheme for combating the effects of noise. (Unfortunately it is not 

implemented in this thesis)  IEEE 802.11a is a robust standard for transmitting data in 

noisy office environments. The processes for creating the long and short preambles, 

the signal symbols and the data symbols are explained in detail. 

 

The IEEE 802.11a standard defines the different packets with their timings and details 

on how to generate them, but does not specify how to implement the IEEE 802.11a 

transmitter or receiver. The implementation is left up to the designer and depends 

upon many things.  
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Our implementation of the IEEE 802.11a transceiver system, for instance, is based on 

the SDR design methodology. This means that the bulk of the processing in the 

transmitter and receiver will be programmed in a software domain. The next chapter 

describes the SDR implementation of the IEEE 802.11a transceiver system detail. The 

IEEE 802.11a transceiver system is programmed in a programming language called 

C++. The IEEE 802.11a transceiver system is initially implemented on a personal 

computer for designing and testing, but the final intended hardware platform is an 

embedded system. 
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Chapter 7 
  

SDR implementation of an IEEE 802.11a 

OFDM system 
 

7.1 Introduction 

 

One of the main purposes of this thesis is the study and implementation of an IEEE 

802.11a OFDM transceiver system. By now we have already discussed the basic 

mathematics behind OFDM, which enables us to create routines for encoding and 

decoding OFDM symbol trains. The IEEE 802.11a implementation of OFDM 

incorporates features into existing OFDM symbols that aids in the decoding of the 

OFDM symbol trains, and helps to overcome most of the major negative performance 

influencing factors found in practical system. The implementation of this system is 

done by means of functions and routines written in a software programming language 

called C Plus-Plus (C++). C++ is one of the most popular programming languages in 

the world, with compilers available for nearly any hardware environment, from 

personal computers to embedded systems. By writing the OFDM encoder and decoder 

software in a generalised modular way, it will insure multi platform compatibility, 

which means that the OFDM software can easily be ported to many different 

hardware systems, depending upon its needed implementation. This chapter 

introduces the current hardware implementation as well as the main structures, 

libraries and functions used by the software and describes in detail the processes of 

encoding and decoding IEEE 802.11a OFDM packets. This chapter together with 

Appendices C and D should be used as a guide when working with the actual C++ 

source code. 
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7.2 Implementation Overview 

 

The IEEE 802.11a transmitter system is implemented on the following system: 

 

Hardware platform (PC Laptop): 

• Intel® Pentium® 4 Processor 

• CPU running at 2.8 GHz  

• Memory: 512 MB of RAM 

• Disk space: 80GB of HDD 

• Sound Device: VIA AC’97 Sound Card 

 

Software platform: 

• Microsoft Windows XP Professional Version 2002 SP 2 

• Borland C++ Builder Professional Version 5.0 Build 12.34 

• Port Audio (Soundcard interface software) Version 18.1 

• Debugging done with Matlab 6.5 (R13) 

 

The IEEE 802.11 receiver system is implemented on the following system: 

 

Hardware platform (PC Desktop) 

• AMD Duron ™ Processor 

• CPU running at 1.00 GHz 

• Memory: 384 MB of RAM 

• Disk Space: Total of 180 GB combined HDD space 

• Sound Device: VIA AC’97 Sound Card 

 

Software Platform: 

• Microsoft Windows XP Professional Version 2002 SP 2 

• Borland C++ Builder Professional Version 5.0 Build 12.34 

• Port Audio (Soundcard interface software) Version 18.1 

• Debugging done with Matlab 6.5 (R13) 
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An IEEE 802.11a transmitter basically takes incoming network data, adds error 

correction bytes, modulates the data into OFDM signals with a bandwidth of 20 MHz, 

upconverts the complex baseband signal to a high frequency carrier and then transmits 

that signal over the air using electro-magnetic waves. The IEEE 802.11a receiver 

receives the signal, downconverts it to baseband, decodes the OFDM signal, corrects 

the faulty data, and returns the original network data as output. 

 

The IEEE 802.11a transmitter built for the purpose of this thesis is based on the 

standards of the IEEE 802.11a modulation scheme, but does not include everything 

the specification specifies. The OFDM encoding software takes test input data, but 

does not add any error correction data to it. The entire OFDM signal is compressed 

into a 44.1kHz signal and that signal is not upconverted or transmitted over the air. 

Instead, the complex baseband signal is transmitted over a pair of copper wires to the 

receiver. The receiver receives the signals and decodes the OFDM signal, returning 

the original data as output. 

 

The main differences between a fully IEEE 802.11a compliant system and the current 

implemented system are shown in Table 7.1. 

 

Nr Parameter IEEE 802.11a system Implemented 

System 

1 Transmit/Receive Data Network Data Test Data 

2 Error Correction Convolutional Coding None 

3 OFDM signal Bandwidth 20 MHz 44.1 kHz 

4 Up conversion to carrier signal Yes No 

5 Transmission channel Electromagnetic waves Stereo copper cables 

6 Hardware platform Embedded Systems Personal Computer 

 

Table 7.1: Differences between the IEEE 802.11a system and the implemented 

system. 
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The lack of an appropriate analogue frontend, ADC and DAC makes it impossible for 

the system to use the intended 20 MHz of bandwidth for the OFDM signal, to 

upconvert the signal to the transmission frequency or to transmit the signal using radio 

waves. These apparent shortcomings do not however stop us from using and testing 

the OFDM transceiver system. By using the following Discrete Fourier Transform 

property, it is possible to scale the frequency of the transmitted signal, by increasing 

or decreasing the time signal by a certain factor: 

 

DFT 1 fs(an) S .
a a

⎛ ⎞⎯⎯⎯→ ⎜ ⎟
⎝ ⎠

                                           (7.1) 

 

It is thus now possible to use the ADC and DAC within a personal computer’s 

soundcard to transmit and receive the signals. The intended 20 MHz complex 

baseband signal can be scaled down to 44.1 kHz, which the computer sound card can 

handle. The scale factor can thus be calculated as: 

 
6

3

20MHz 20 10a 453.5
44.1kHz 44.1 10

×
= = ≈

×
                                   (7.2) 

 

The IEEE 802.11a OFDM signal can now be scaled down to this lower frequency 

prior to transmission. A pair of copper stereo cables between the transmitting and 

receiving computer replaces the analogue front-end and acts as the communications 

channel. 

 

The lack of the IEEE 802.11a forward error correction scheme at the transmitter and 

receiver will also not be a problem, since it will force us to examine the received data 

stream as it is, of which statistics, such as the bit error rates can directly be 

determined. 

 

7.3 Hardware Implementation 

 

Software Defined Radio is an architecture where all possible processing resides in a 

software domain. Different software packages performing different digital signal 

processing and mathematical processes can be combined to define the operation of the 
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hardware device. As mentioned, one of the advantages of SDR is that the software is 

portable, so it can be designed and tested on a certain hardware platform, and then 

later ported to the intended embedded hardware when finished. 

 

The final intended hardware platform for this project is a small, embedded IEEE 

802.11a transceiver system and is shown in Figure 7.1. 

 
 

Figure 7.1: The intended IEEE 802.11a SDR transceiver system 

 

The current SDR hardware platform is two personal computers running the IEEE 

802.11a software packages. The two personal computers are connected together using 

copper stereo sound cables that act as the communications channel, shown in Figure 

7.2. 
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7.4 Software Implementation 

 

As mentioned, the IEEE 802.11a based OFDM transceiver system is programmed in 

C++. The complete software package consists of two major parts, namely the OFDM 

transceiver libraries and the Graphical User Interface (GUI). The OFDM transceiver 

libraries include the programs for encoding and decoding the IEEE 802.11a based 

OFDM symbol trains as well as a library for interfacing the transceiver with the 

current hardware platform through the soundcard. The GUI acts as a simple user 

interface for demonstrating the capabilities of the OFDM libraries. 

 

7.4.1 The Graphical User Interface 

 

The GUI does not do any serious processing in regards to the OFDM transceiver, but 

it plays an important part in demonstrating the capabilities of the OFDM libraries, and 

gives a clear picture of how the system works as a whole. The GUI is titled OFDM 

Real time Encoding/Decoding Demo Version 1.00, and is used as both the OFDM 

transmitter and the OFDM receiver. For demonstration purposes, the GUI must be 

running on both the transmitter and receiver system.  

 

The GUI enables the user to perform the following functions: 

 

• Initialise and deinitialise the OFDM libraries. 

• Initialise and deinitialise the audio devices. 

• Selecting of a suitable audio device from a list of available devices. 

• Encoding and transmission of IEEE 802.11a OFDM data: 

o Initiate the OFDM transmitter system. (For transmission of a test 

image or a test data packet) 

o Load transmission data. (A test image, or test data packet) 

o Displays the transmission data, if it is a test image. 

o Encodes the transmission data into an IEEE 802.11a OFDM data 

packet. 

o Adds AWGN to the OFDM data packet, if desired. 

o Transmits the IEEE 802.11a data packet across the audio device. 
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o Transmits the IEEE 802.11a data packet to a local data file, for test 

purposes. 

• Receiving and decoding of IEEE 802.11a OFDM data: 

o Initiate the OFDM receiver system. (For transmission of a test image 

or a test data packet) 

o Enable or disable the reference carrier phase compensation algorithm 

in the decoder. 

o Receive and decode the IEEE 802.11a OFDM data from an audio 

device. 

o Receive and decode the IEEE 802.11a OFDM data from a local file.  

o Displays the received test image. 

o Load comparative data. (An test image or a test data packet) 

o Displays the comparative test image. 

o Compare the decoded received data against the comparative data. 

o Displays the total amount of data bits transferred. 

o Displays the total amount of incorrect data bits received. 

o Displays the Bit-error rate of the received data. 

• Calibrates Sound Device Volume Settings: 

o Transmits a full volume sine wave for 10 seconds over the sound 

device for calibration purposes. 

o Receives the calibration sine wave and determines whether any 

clipping has occurred, in which case the transmitted volume needs to 

be reduced. 

• Useful user feedback messages in the main message window, shows the user 

exactly what the program is doing. 
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Table 7.2 explains some of the functions available on the OFDM Encoding/Decoding 

Demo GUI. The Code parameter refers to the marked locations on Figure 7.3. 

 

Code Functions Function Details 

A Audio Initiate, Audio 

Deinitiate, OFDM Initiate, 

OFDM Deinitiate 

Initialisation and de-initialisation of the OFDM 

libraries and the audio devices. At start up, one 

needs to Initiate the Audio and OFDM. 

B Transmitter initiate for 

Data; Transmitter Initiate 

for Image; Load transmit 

file; Encode; Add Noise; 

Transmit Audio; Save to 

file 

OFDM Transmitter routines: Initiating the 

OFDM transmitter for transmitting a test image 

or a test data packet; loading the data; encoding 

the IEEE 802.11a OFDM packet; adding AWGN 

to the transmission; Transmitting the signal over 

the sound device or to a local test file 

C Receiver Initiate for Data; 

Receiver Initiate for 

Image; Decode From File; 

Decode From Audio; 

Load comparer File; 

Receive Audio, Compare; 

Save To File 

OFDM Receiver routines: Initiating the OFDM 

receiver for receiving and decoding a test image 

or a test data packet; decoding the signal from 

file or from the sound device; Load the 

comparative data; Comparing the received data 

to the comparative data; Saving the received 

transmission to file. 

D Noise SNR  Setting transmit AWGN SNR in dB 

E Transmission Image  Displays the transmission test image 

F Received Image Display Displays the received test image 

G Comparative Image  Displays the comparative test image 

H Audio Options Audio Device Options and selection menu 

I Message Window The message window shows current program 

activity and messages 

J Receiver-Comparer 

Statistics 

Receiver data statistics shows amount of received 

bits, erroneous received bits and BER 

   

Table 7.2: Guide to the functions of the OFDM Encoding/Decoding Demo GUI 
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7.4.2 The Software Structures 

 

C++ structures are basically a group of variables and buffers grouped under a 

common name for ease of use. The OFDM transceiver software uses five main 

structures to group the different variables that are used by the different software 

libraries. Structures are passed to and from functions that process the variables 

contained within them. 

  

The five different structures are: 

 

1. The OFDM specifications structure 

2. The OFDM transmitter structure 

3. The OFDM receiver structure 

4. The OFDM comparer structure 

5. The OFDM audio structure 

 

7.4.2.1 The OFDM specification structure 

 

The main OFDM specification structure contains information on the physical makeup 

of the OFDM signal, which includes OFDM frequency and timing specifications. This 

structure is known by its C++ name: OFDM_Specification_struct and is located in 

the C++ file: OFDM.h. For a list of complete structure details please refer to 

Appendix C.1.  

 

An overview of the information stored in the OFDM specification structure is: 

 

• OFDM frequency specifications. 

• OFDM signal timings. 

• OFDM signal sample sizes. 

• OFDM sub-carrier modulation specifications. 

• OFDM data sub-carrier frequency spectrum locations. 

• OFDM reference sub-carrier frequency spectrum locations. 

• OFDM reference sub-carrier values. 
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• IEEE 802.11a OFDM long preamble buffer. 

• IEEE 802.11a OFDM long preamble guard interval buffer. 

• IEEE 802.11a OFDM short preamble buffer. 

• IEEE 802.11a OFDM signal symbol buffer. 

• The Discrete Fourier Transform (DFT) twiddle factors. 

• The Inverse Discrete Fourier Transform (IDFT) twiddle factors. 

• The real and imaginary time domain buffers for the IDFT and DFT. 

• The real and imaginary frequency spectrum buffers for the IDT and DFT. 

• The magnitude and phase frequency spectrum buffers for the IDFT and DFT. 

• Boolean checks to indicated an initiated OFDM specification structure. 

 

7.4.2.2 The OFDM transmitter structure 

 

The OFDM transmitter structure contains information about the transmission data, the 

transmission OFDM encoding process and contains pointers to the signal transmission 

arrays. This structure is known by its C++ name: OFDM_transmitter_stuct and is 

located in the C++ file: OFDM_transmitter.h. For a list of complete structure details 

please refer to Appendix C.2. 

 

An overview of the information stored in the OFDM transmitter structure is: 

 

• The total amount of bytes and bits in the transmission. 

• The total amount of data symbols in the transmission. 

• Sub-carrier and OFDM modulation information. 

• The buffers that store the transmission bits and bytes. 

• The transmission signal I (real) & Q (imaginary) buffers. 

• A single symbol temporary  I (real) & Q (imaginary) buffers. 

• The transmit filename and file type. 

• The Signal-to-Noise ratio of the added noise. (if used) 

• Boolean checks to indicate initiated transmit data and buffers. 

• Boolean checks to indicate complete transmission encoding. 

 

 

 106



 

7.4.2.3 The OFDM receiver structure 

 

The OFDM receiver structure contains information about the process of receiving and 

decoding OFDM signals. The structure is known by its C++ name: 

OFDM_receiver_struct and is located in the C++ file: OFDM_receiver.h . For a list 

of complete structure details please refer to Appendix C.3. 

 

An overview of the information stored in the OFDM receiver structure is: 

 

• The expected amount of OFDM data symbols. 

• Sub-carrier and OFDM modulation information. 

• The receiving signal I (real) & Q (imaginary) buffers. 

• A primary decoding/receiving buffer. 

• Receive-from-file filename and information. 

• Receiver state machine current state information. 

• Energy threshold values. (State 1) 

• IEEE 802.11a short preamble cross-correlation signal buffers. (State 2) 

• IEEE 802.11a short preamble cross-correlation results. (State 2) 

• IEEE 802.11a long preamble cross-correlation signal buffers. (State 2) 

• IEEE 802.11a long preamble cross-correlation results. (State 2) 

• Combined IEEE 802.11a short and long preamble cross-correlation signal 

buffers. (State 2)  

• Combined IEEE 802.11a short and long preamble cross-correlation results. 

(State 2) 

• IEEE 802.11a short preamble start position. (State 2) 

• IEEE 802.11a long preamble start position. (State 2) 

• IEEE 802.11a signal symbol start position (State 2) 

• IEEE 802.11a first data symbol start position. (State 2) 

• Channel transfer function details from IEEE 802.11a long preamble. (State 3) 

• IEEE 802.11a signal symbol information. (State 3) 

• Miscellaneous decoding variables. (State 4)  

• OFDM data sub-carrier frequency spectrum locations. (State 4) 
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• OFDM reference sub-carrier frequency spectrum locations. 

• Buffers to store the decoded data bits and bytes. 

• Buffer to store the OFDM sub-sample offset values. 

• Boolean checks to indicate decoding errors. 

• Boolean checks to indicate decoding completion. 

 

7.4.2.4 The OFDM comparer structure 

 

The OFDM comparer structure contains information about the comparative data, 

which is used to compare the received data to. It also contains some statistics about 

the received OFDM data. The structure is known by its C++ name: 

OFDM_comparer_struct and is located in the C++ file: OFDM_comparer.h. For a 

list of complete structure details please refer to Appendix C.4. 

 

An overview of the information stored in the OFDM comparer structure is: 

 

• The comparative data. 

• The total data bits of the comparative data. 

• The total data bits of the received data. 

• The total amount of erroneous data bits in the received data. 

• The bit-error-rate (BER) of the received data. 

• A Boolean check to indicate the comparing process is complete. 

 

7.4.2.5 The OFDM audio structure 

 

The OFDM audio structure contains information about the audio device interface and 

links it to the received/transmitted data. The structure is known by its C++ name: 

OFDM_audio_struct and is located in the C++ file: OFDM_audio.h. For a list of 

complete structure details please refer to Appendix C.5. 

 

An overview of the information stored in the OFDM audio structure is: 

 

• A Boolean check to indicate that the audio initialisation is complete. 
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• Information about the number of audio devices found on the system. 

• Information about each audio device on the system. 

• Information about the current selected audio device. 

• Boolean checks to indicate selected and ready audio devices. 

 

There are two other structures used by the independent audio libraries to interface 

with the transmission data. They act as temporary interface structures and stores 

information about current audio device activities and buffers. The two structures are 

known by their C++ names as, PaSoundCardPlaybackDataStruct and 

paSoundCardRecordedDataStruct. They are never directly used or altered by the 

OFDM software. 

 

7.4.3 The Software Libraries 

 

The IEEE 802.11a OFDM transceiver libraries include all the functions, variables and 

structures for encoding and decoding the IEEE 802.11a based OFDM symbols and 

symbol trains. Libraries are basically container files, which houses different 

structures, variables and functions. It is the part of the software that can be ported for 

use on different hardware platforms. Included in these libraries is the OFDM audio 

interface library that interfaces the transceiver with the current hardware 

implementation. 

 

The six main OFDM libraries are: 

 

1. The main OFDM library. 

2. The OFDM mathematics library. 

3. The OFDM transmitter library. 

4. The OFDM receiver library. 

5. The OFDM comparer library. 

6. The OFDM audio interface library. 

 

These libraries work together to process the data and encode or decode OFDM 

symbol trains. 

 109



 

7.4.3.1 The Main OFDM Library 

 

The main OFDM library is basically used to create and initialise the main OFDM 

structures, buffers and variables, and contains some basic functions, which can be 

used by all the other libraries. The two C++ files which contains the main OFDM 

library are: OFDM.cpp and OFDM.h. The Main OFDM library is basically the 

container file for the OFDM specifications structure, and all the functions to use and 

manipulate it.  For a list of function details please refer to Appendix C.6. 

 

The functions within the main library basically do the following: 

 

• Initiates the OFDM specifications structure. 

• Cleans time and frequency DFT/IDFT buffers. 

• The IDFT function block. 

• The DFT function block. 

• Converts the real and imaginary frequency spectrum to its equivalent 

magnitude and phase spectrum. 

• Creates the DFT and IDFT twiddle factors. 

• Creates the IEEE 802.11a long preamble symbol. 

• Creates the IEEE 802.11a long preamble guard interval. 

• Creates the IEEE 802.11a short preamble symbol. 

• De-initiates the OFDM specification structure. 

 

7.4.3.2 The OFDM Mathematics Library 

 

The OFDM mathematical library contains mathematical functions that is used in the 

transmission and receiving of OFDM data symbol trains. The two C++ files which 

contains the OFDM mathematic library are: OFDM_Math.cpp and OFDM_Math.h. 

For a list of function details please refer to Appendix C.7. 
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The functions within the mathematical library basically do the following: 

 

• Cross-correlation between two data sets. 

• Search for maximum values and their locations inside buffers. 

• Search for minimum values and their locations inside buffers. 

• Calculate the root-mean-square (RMS) of a buffer. 

• Map data bits (or arrays thereof) to QPSK phases. 

• De-map single QPSK phases (or arrays thereof) to data bits. 

• Convert a 8-bit binary array to a byte (or arrays thereof). 

• Convert a byte (or arrays thereof) to an 8-bit binary array. 

• Rounding of a float-type variable. 

• Return the reverse of an array. 

• Return the conjugate of an array. 

• Convert a normalised float to a 16-bit word and then to two 8-bit bytes. 

• Convert two 8-bit bytes to a 16-bit word and then a normalised float. 

• Calculate the absolute value of a float-type C++ variable. 

• Return the quadrant in which a phase is located. 

• Calculate the amount of differences between two data sets. 

• Unwrap a phase value and calculate the minimum distance to 0 degrees. 

• Unwrap a phase value and calculate the minimum distance to 180 degrees. 

 

7.4.3.3 The OFDM Transmitter Library 

 

The OFDM transmitter library contains functions and a structure used in the encoding 

and transmitting of IEEE 802.11a OFDM data streams. The two C++ files which 

contains the OFDM transmitter library are: OFDM_transmitter.cpp and 

OFDM_transmitter.h. The OFDM transmitter library contains the OFDM 

transmitter structure and functions for initiating and manipulating it. For a list of 

function details please refer to Appendix C.8. 
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The functions within the OFDM transmitter library basically do the following 

 

• Initiates the OFDM transmitter structure. 

• Get the filename and load the transmission data. (image or data packet) 

• Adds all the IEEE 802.11a preambles to the transmission buffer. 

• Adds the IEEE 802.11a signal symbol to the transmission buffer. 

• Convert IEEE 802.11a OFDM data phases to complete IEEE 802.11a data 

symbols. 

• Adds a IEEE 802.11a data symbol to the transmission buffer. 

• Saves the IEEE 802.11a transmission to file. 

• Adds AWGN to the IEEE 802.11a transmission file. 

 

7.4.3.4 The OFDM Receiver Library 

 

The OFDM receiver library contains functions and a structure used in the receiving 

and decoding of IEEE 802.11a OFDM data streams. The two C++ files which 

contains OFDM receiver library are: OFDM_receiver.cpp and OFDM_receiver.h. 

The OFDM receiver library houses the OFDM receiver structure and functions for 

initiating and manipulating it. For a list of function details refer to Appendix C.9. 

 

The functions within the OFDM receiver library basically do the following: 

 

• Initiates the OFDM receiver structure, by calling functions to: 

• Create and clear the receiving buffers. 

• Setup the receiving buffers and variables. 

• Get the filename, the data and data size when decoding from local test files. 

• Start decode from a local file, by loading the test file into a transmission buffer 

and then calling the decoder state machine. 

• Start decode from a sound buffer, by linking the received sound buffer to the 

decoder state machine. 

• Start the decoder state machine. (buffer decoder) 

• Decoder State 1, Signal Energy Detection. 
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• Decoder State 2, IEEE 802.11a short and long preamble train cross-

correlation. (complete initial synchronisation) 

• Decoder State 3, extract the IEEE 802.11a long preamble information for use 

in channel transfer function estimation, extract data from the signal symbol. 

• Decoder State 4, extract and decoder IEEE 802.11a data from the 

transmission. 

• Decoder State 4, calls the functions that: 

• Create phase shifts from a range sub-sample offsets. 

• Adds the phase shifts to current reference phase values. 

• Calculate best-fit solution for sub-sample offset. 

• Compensate OFDM phases for sub-sample offset. 

• Save the received transmission to file. 

• Update the GUI received image. 

 

7.4.3.5 The OFDM Comparer Library 

 

The OFDM comparer library contains functions and a structure used in comparing the 

received IEEE 802.11a OFDM data stream with comparative data, to produce 

performance result statistics. The two C++ files which contains the OFDM comparer 

library are: OFDM_comparer.cpp and OFDM_comparer.h. The OFDM comparer 

library also houses the OFDM comparer structure and functions for initiating and 

manipulating it. For a list of function details refer to Appendix C.10. 

 

The functions within the OFDM comparer library basically do the following 

 

• Initiates the OFDM comparer structure. 

• Get the filename and load the comparative data.  

• Compare the received data with the comparative data. 
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7.4.3.6 The OFDM Audio Library 

 

The OFDM audio library contains functions and a structure used by the OFDM 

transceiver program to interface with the hardware audio devices. The two C++ files 

which contains the OFDM audio library are: OFDM_audio.cpp and 

OFDM_audio.h. The OFDM audio library also houses the OFDM audio structure 

and functions for initiating and manipulating it. For a list of function details refer to 

Appendix C.11. 

 

The functions within the OFDM audio library basically do the following; 

 

• Initiates the OFDM audio structure and the audio devices. 

• Callback functions for audio playback and recording. 

• Select appropriate audio devices. 

• Playback the IEEE 802.11a encoded transmission. 

• Playback the calibration sine wave. 

• Record the IEEE 802.11a encoded transmission. 

• Record the calibration sine wave. 

• Evaluate the calibration sine wave. 

• Close the audio devices. 

 

7.4.4 Conclusions on the software implementation 

 

So far, the software structures and libraries has been introduced and quickly 

explained, but as separate entities they can’t perform any real tasks. Specific library 

functions and structures together with the GUI need to be linked together to form a 

logical chain of events which will produce the desired results, such as encoding digital 

data into IEEE 802.11a OFDM packets, or receiving the IEEE 802.11a OFDM 

packets and decoding them into digital data. The next section will attempt to explain 

in detail what happens in each part of the IEEE 802.11a transceiver system, in regards 

to function, variables, buffers, structures and libraries. 
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7.5 The Complete IEEE 802.11a Transceiver System 

 

The intended IEEE 802.11a hardware platform and the basic software structures and 

libraries have been introduced, and it is now possible to describe the implemented 

IEEE 802.11a transceiver in detail. 

 

7.5.1 The IEEE 802.11a Transmitter 

 

The implemented IEEE 802.11a transmitter can be explained using the following flow 

diagram in Figure 7.4. 

 

 
 

Figure 7.4: The implemented IEEE 802.11a OFDM transmitter flowchart  
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7.5.1.1 The Encoding/Transmitting Process Overview: 

 

The complete IEEE 802.11a encoding process can be summed up as: 

 

1. Initiating the OFDM audio system. 

2. Initiating the main OFDM specifications. 

3. Selecting an appropriate sound device for output. (if needed) 

4. Initiating the OFDM transmitter for a test data packet or a test image. 

5. Loading the appropriate test data. 

6. Encoding the test data into an IEEE 802.11a OFDM packet. 

7. Adding AWGN to the transmission. (if needed) 

8. Transmitting the IEEE 802.11a OFDM packet to file or to the sound device. 

 

7.5.1.2 Initiating The OFDM Audio system 

 

Initiating the OFDM audio system is done by pressing the “Audio Initiate” button 

located at “A” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This action 

will call the Audio_Initiate_Audio function located in the OFDM_audio library. 

The flowchart in Figure 7.5 explains the processes, functions and actions involved in 

initiating the OFDM audio devices 
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Figure 7.5: The OFDM audio initiation flowchart 

 

7.5.1.3 Initiating The Main OFDM Specifications 

 

Initiating the main OFDM specifications is done by pressing the “OFDM Initiate” 

button located at “A” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This 

action will call the OFDM_Initiate_All function located in the OFDM library. The 

flowchart in Figure 7.6 explains the processes, functions and actions involved in 

initiating the main OFDM specifications. 

 

 
Figure 7.6: The main OFDM specifications initiation flowchart 
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7.5.1.4 Selecting an Appropriate Sound Device For Output 

 

Selecting an appropriate sound device with output capabilities is done by selecting 

one of the available sound devices in the combo box located at “H” on the OFDM 

encoding/decoding Demo GUI in Figure 7.3. This action will call the function: 

Audio_Change_Audio_Device_With_ComboBox located in the OFDM_audio 

library. The flowchart in Figure 7.7 explains the processes, functions and actions 

involved in selecting different sound devices 

 

 
 

Figure 7.7: The selection of an appropriate sound device for output flowchart 

 

7.5.1.5 Initiating The OFDM Transmitter 

 

Initiating the OFDM transmitter for the transmission of a test data packet is done by 

pressing the “Transmitter Initiate for Data” button located at “B” on the OFDM 

encoding/decoding Demo GUI in Figure 7.3. This action will call the 

OFDM_Transmitter_Init_Data_Transmitter function located in the 

OFDM_transmitter library.  
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Initiating the OFDM transmitter for the transmission of a test image is done by 

pressing the “Transmitter Initiate for Image” button also located at “B” on the OFDM 

encoding/decoding Demo GUI in Figure 7.3. This action will call the 

OFDM_Transmitter_Init_Image_Transmitter function also located in the 

OFDM_transmitter library. The flowchart in Figure 7.8 explains the processes; 

functions and actions involved in initiating the OFDM transmitter for both test data 

and test image transmission. 

 

 
 

Figure 7.8: The OFDM transmitter initiation flowchart 
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7.5.1.6 Loading The Appropriate Test Data 

 

The appropriate test data is loaded by pressing the “Load Transmit File” button 

located at “B” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This action 

will call the OFDM_Transmitter_Load_Transmit_File function located in the 

OFDM_transmitter library. The flowchart in Figure 7.9 explains the processes, 

functions and actions involved in loading the test data. 

  

 
 

Figure 7.9: The loading of a transmission file flowchart 

 

The GUI program is capable of loading and transmitting two types of data. The first is 

a test image and the second is a smaller test data packet. The test images are mainly 

used for demonstrative purposes and simulation tests and are relatively large in size. 

The test data packets are smaller in size and are mainly used in the real-time buffered 

system tests.  
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The test image parameters are chosen very specifically so that its OFDM encoded data 

occupies exactly 4096 data symbols, which is also the maximum allowed OFDM data 

symbols according to the IEEE 802.11a specifications. The image parameters are 

shown in Table 7.3. 

 

Image Parameter Value 

Image format Standard uncompressed Bitmap 

Image Height 192 

Image Width 256 

Image Colour Depth 8 bits (1 byte) greyscale 

 

Table 7.3: Test image parameters. 

 

The total amount of image bits can be calculated as the product of its height, width 

and image colour depth, 

 

( )( )( )Total Image Bits = Width Height Colour Depth ,                  (7.3) 

 

which is 

( )( )( )Total Image Bits = 256 192 8 393216.=                          (7.4) 

 

The total amount of digital data bits an IEEE 802.11a OFDM packet can encode can 

be calculated as the product of the bits per data carrier, the amount of data carriers per 

OFDM symbol and the total amount of OFDM data symbols, 

 

( )
( )
( )

Total Encoded Bits = Total OFDM data symbols

                                 Data Carriers per Symbol

                                 Bits per Data Carrier ,

×

×

                    (7.5) 

 

which is 

 

Total Encoded Bits = (4096)(48)(2) = 393216.                        (7.6) 
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The results from (7.4) and (7.6) are the same, which proves the fact that the test 

images will occupy exactly 4096 OFDM data symbols. 

 

The test data packets are smaller than the test images, and have only 6144 bytes or 

49152 bits each. Rewriting Equation (7.5), we can calculate the amount of OFDM 

data symbols the test data packets will occupy as 

 

( )
( )( )

Total Encoded Bits
OFDM data symbols= ,

Data Carriers per Symbol Bits per Data Carrier
   (7.7) 

 

which is 

( )
( )( )
49152

OFDM data symbols= 512.
48 2

=                                (7.8) 

 

The test data packets are small with an estimated 1-second transmission time over the 

computer sound card, in opposed to the estimated 7-second transmission time of the 

test images. As mentioned, the small data packets are mainly used in the real-time 

buffered transmission test. It reduces the total testing time due to the massive amount 

of tests needed to statistically validate the system. 

 

7.5.1.7 Encoding The Test Data 

 

Encoding the test data into an IEEE 802.11a OFDM packet is done by pressing the 

“Encode” button located at “B” on the OFDM encoding/decoding Demo GUI in 

Figure 7.3. This action will call the OFDM_Transmitter_Encode function located in 

the OFDM_transmitter library. The flowchart in Figure 7.10 explains the processes, 

functions and actions involved in encoding the IEEE 802.11a OFDM packet. 
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Figure 7.10: The encoding of an IEEE 802.11a OFDM packet flowchart 
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7.5.1.8 Adding AWGN To The Transmission 

 

Adding AWGN to the transmission is done by pressing the “Add Noise” Button 

located at “B” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This action 

will call the OFDM_Transmitter_Add_Noise function located in the 

OFDM_transmitter library. The SNR of the AWGN is determined by the value 

entered at “Noise SNR” text box located at “D” on the OFDM encoding/decoding 

Demo GUI in Figure 7.3. The flowchart in Figure 7.11 explains the processes, 

functions and actions involved in adding AWGN to the transmission signal. 

 

 
 

Figure 7.11: Adding AWGN to the transmission signal flowchart 

 

7.5.1.9 Transmitting The IEEE 802.11a OFDM Packet 

 

Transmitting the IEEE 802.11a OFDM packet to the sound device is done by pressing 

the “Transmit Audio” button located at “B” on the OFDM encoding/decoding Demo 

GUI in Figure 7.3. This action will call the Audio_Play_Transmission function 

located in the OFDM_audio library. Transmitting the IEEE 802.11a OFDM packet to 

a file is done by pressing the “Save to File” button located at “B” on the OFDM 

encoding/decoding Demo GUI in Figure 7.3. This action will call the 

OFDM_Transmitter_Save_Transmission_To_Custom_File located in the 
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OFDM_transmitter library. The flowchart in Figure 7.12 explains the processes, 

functions and actions involved in adding AWGN to the transmission signal. 

 

 
 

Figure 7.12: Transmitting the IEEE 802.11a OFDM packet flowchart 

 

7.5.1.10 Conclusions On The Encoding/Transmitting Process 

 

Sections 7.5.1.2 through 7.5.1.9 attempts to logically explain the process of encoding 

and transmitting IEEE 802.11a OFDM packets. The real software libraries, structures 

and functions are in actual fact much more complicated. It is recommended that the 

information about the graphic user interface (GUI) the software structures, the 

software libraries, the explained processes involved, together with Appendices C and 

D be used as a guide when working with the raw C++ source code. 
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7.5.2 The IEEE 802.11a Receiver 

 

The implemented IEEE 802.11a receiver can be explained using the following flow 

diagram. 

 

 
 

Figure 7.13: The implemented IEEE 802.11a OFDM receiver flowchart 
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7.5.2.1 The Receiving/Decoding Process Overview 

 

The complete IEEE 802.11a decoding process can be summed up as: 

 

1. Initiating the OFDM audio system. 

2. Initiating the main OFDM specifications. 

3. Selecting an appropriate sound device for input, if desired. 

4. Initiating the OFDM receiver for a test data packet or a test image. 

5. Decoding IEEE 802.11a signals. 

6. Loading a compare file. 

7. Comparing received and comparative data. 

8. Saving the transmission to file. 

 

7.5.2.2 Initiating The OFDM Audio System 

 

Initiating the OFDM audio system is done by pressing the “Audio Initiate” button 

located at “A” on the OFDM encoding/decoding GUI in Figure 7.3. This process is 

exactly the same as in the case of the IEEE 802.11a transmitter; refer to Section 

7.5.1.2 for more detail. 

 

7.5.2.3 Initiating The Main OFDM Specifications 

 

Initiating the main OFDM specifications is done by pressing the “OFDM Initiate” 

button located at “A” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This 

process is exactly the same as in the case of the IEEE 802.11a transmitter, so please 

refer to Section 7.5.1.3 for more detail. 

 

7.5.2.4 Selecting an Appropriate Sound Device For Input 

 

Selecting an appropriate sound device with input (recording) capabilities is done by 

selecting one of the available devices in the combo box located at “H” on the OFDM 

encoding/decoding Demo GUI in Figure 7.3. This process is exactly the same as in 

the case of the IEEE 802.11a transmitter: Refer to Section 7.5.1.4 for more detail. 
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7.5.2.5 Initiating The OFDM Receiver 

 

Initiating the OFDM receiver for the transmission of a test data packet is done by 

pressing the “Receiver Initiate for Data” button located at “C” on the OFDM 

encoding/decoding Demo GUI in Figure 7.3. This action will call the 

OFDM_Receiver_Init_Data_Receiver function located in the OFDM_receiver 

library. Initiating the OFDM receiver for the transmission of a test image is done by 

pressing the “Receiver Initiate for Image” button also located at “C” on the OFDM 

encoding/decoding Demo GUI in Figure 7.3. This action will call the 

OFDM_Receiver_Init_Image_Receiver function also located in the 

OFDM_receiver library. The flowchart in Figure 7.14 explains the processes; 

functions and actions involved in initiating the OFDM receiver for both test data 

packets and test image transmission. 

 

 
 

Figure 7.14: The OFDM receiver initiation flowchart 
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7.5.2.6 Decoding IEEE 802.11a Signals 

 

Decoding IEEE 802.11a signals from file is done by pressing the “Decode from File” 

button located at “C” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This 

action will call the OFDM_Receiver_Start_Decode_From_File function located in 

the OFDM_receiver library. Decoding IEEE 802.11a signals from the audio device is 

done by pressing the “Decode from Audio” button located at “C” on the OFDM 

encoding/decoding Demo GUI in Figure 7.3. This action will call the 

Audio_Record_Transmission function located in the OFDM_audio library. The 

flowchart in Figure 7.15 to 7.21 explains the processes; functions and actions 

involved in decoding IEEE 802.11a signals from local files and from the audio device. 

 

 
 

Figure 7.15: Decoding IEEE 802.11a signals from the audio device flowchart 
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Figure 7.16: Decoding IEEE 802.11a signals from a local file flowchart 

 

 
 

Figure 7.17: IEEE 802.11a decoder state machine flowchart 
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Figure 7.18: IEEE 802.11a decoder state 4, data decoder flowchart 

 

 
 

Figure 7.19: IEEE 802.11a decoder state 3, statistics extraction flowchart 
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Figure 7.20: IEEE 802.11a decoder state 1 and 2  

 

 
Figure 7.21: IEEE 802.11a decoder sub-sample offset estimator flowchart 
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7.5.2.7 Loading a Compare File 

 

Loading a compare file is done by pressing the button “Load Compare File” located at 

“C” on the OFDM encoding/decoding Demo GUI in Figure 7.3. This action will call 

the OFDM_Comparer_LoadCompareFile function located in the 

OFDM_comparer library. The flowchart in Figure 7.22 explains the processes; 

functions and actions involved in loading a compare file. 

 

 
 

Figure 7.22: Loading a compare file flowchart 

 

7.5.2.8 Comparing Received Data 

 

Comparing the received data to comparative data and determining the performance 

statistics is done by pressing the button “Compare” located at “C” on the OFDM 

encoding/decoding Demo GUI in Figure 7.3. This action will call the 

OFDM_Comparer_Compare function located in the OFDM_comparer library. 

The flowchart in Figure 7.23 explains the processes; functions and actions involved in 

comparing data. 
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Figure 7.23: Comparing received data flowchart 

 

7.5.2.9 Saving The Transmission to File 

 

Saving the received transmission to file is done by pressing the button “Save To File” 

located at “C” on the OFDM encoding/decoding Demo GUI in Figure 7.3. The action 

will call the OFDM_Receiver_Save_Transmission_To_Custom_File function  

located in the OFDM_Receiver library. The flowchart in Figure 7.24 explains the 

processes; functions and actions involved in comparing data. 

 

 
 

Figure 7.24: Saving the received transmission to file flowchart 

 

7.5.2.10 Conclusions On The Receiving/Decoding Process 

 

As mentioned earlier, the receiving and decoding of IEEE 802.11a OFDM data as 

explained in Sections 7.5.2.2 through 7.5.2.9 attempts to logically explain the 

processes involved, but should only be used as a guide. The real software libraries, 

structures and functions are in actual fact much more complicated. It is recommended 

that the information about the graphic user interface (GUI), the software structures, 

the software libraries, the explained processes involved, together with appendices C 

and D be used as a guide when working with the raw C++ source code. 
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7.5.3 Conclusions On The IEEE 802.11a Transceiver System 

 

Sections 7.5.1 and 7.5.2 discussed the IEEE 802.11a transmitter and the IEEE 802.11a 

receiver processes in detail. The implemented IEEE 802.11a transceiver system can 

now be tested to determine how well it works. 

 

7.6 Conclusions 

 

This chapter introduced the SDR implementation of the IEEE 802.11a based 

transceiver system. Two personal computers were used as the hardware platforms. 

Their sound devices (sound cards) where connected together using stereo copper 

wires which acted as the communications channel. The IEEE 802.11a OFDM 

transceiver software is written in C++ and basically consists of a demonstration GUI 

and 6 software libraries. The demonstration program has the ability of encoding data 

into IEEE 802.11a OFDM packets and transferring it over the communications 

channel using the computer sound card. On the receiving computer, the demonstration 

program can receive the incoming data using the soundcard and decode the IEEE 

802.11a OFDM packets and retrieve the original data. All the software structures, 

libraries and processes have been explained in this chapter, and should be used as a 

guide when working with the original source code. In the next chapter the 

performance of the implemented IEEE 802.11a transceiver system will be tested, to 

determine how well it works. The receiver system will be put through a series of 

simulation tests as well as real-time tests and influenced with different performance 

influencing factors to validate its performance.  
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Chapter 8 
  

OFDM System Performance Tests and 

Results 
  

8.1 Introduction 

 

To determine how well the IEEE 802.11a based OFDM transceiver system works, it is 

necessary to test it. By testing different parts of the system and using different types 

of test data, it is possible to get a clear picture of how the system will perform in real-

life situations. It also helps to identify parts of the system that needs to be improved.  

 

8.2 Data Performance Tests and Results 

 

The purpose of the IEEE 802.11a based OFDM transceiver system is to take digital 

data from a source, manipulate it using the rules set out in the IEEE 802.11a standards 

and finally deliver the digital data to a destination device. The most important test of 

such a system would thus be a test to determine the quality of the received digital 

data. The whole purpose of the IEEE 802.11a standard is to create a system that will 

maintain the best possible data quality (also known as the quality of service, since the 

service is the delivery of digital data) in the environment it is destined to be used in. 

Data performance tests test the quality of the received digital data. The result of these 

tests is the BER, which represents the expected amount of errors per unit of data in the 

receiver data. Data performance tests are done on simulation data first, to predict the 

data quality for different expected real-life factors, but in a controlled environment. 

The tests are then expanded to include controlled and measured transmissions over the 

communications channel, to gather statistics about the channel and sound devices and 

finally real-time communications tests. The three most important data performance 

tests that will be conducted on the IEEE 802.11a OFDM packets are shown in Table 

8.1. 
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Nr Test Reason 

1 General encoding and 

decoding tests without 

any performance 

influencing factors. 

1. Test whether the basic encoding and decoding 

processes work. 

2. Test the initial OFDM symbol synchronisation 

ability of the system. 

2 AWGN data 

performance tests. 

1. Test the receiver in the presence of noise. 

2. Comparing the BER at different SNR against 

predicted values, will determine how effective the 

sub-carrier modulation works. 

3 Sampling frequency 

drift tests. 

1. This will test the continuous re-synchronisation 

and phase compensation ability of the receiver. 

2. Test the influence of the re-synchronisation 

algorithms on normal data. 

 

Table 8.1: The three most important data performance tests. 

 

8.2.1 The Test Data Set 

 

As mentioned in Chapter 7, The OFDM GUI program loads graphical images as test 

data for the IEEE 802.11a OFDM packets. It is easier to see the effects of real life 

performance influencing factors on the images than on random data. Five images 

where used in the data performance tests: 

 

 
Figure 8.1: Test Image 1 

 

 
Figure 8.2: Test Image 2 (just white) 
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Figure 8.3: Test Image 3 

 

 
Figure 8.4: Test Image 4 

 
Figure 8.5: Test Image 5 

 

 

Total data bits in each test image: 

 

= (256)(192)(8) 

= 393216 bits 

 

 

8.2.2 Simulation Tests 

 

Simulation tests encode test data into IEEE 802.11a OFDM packets but instead of 

transmitting it over the channel, the whole transmission is saved to a local file. This 

local file, representing the transmission, is then subjected to different real-life 

influences, but in a controlled manner. The altered transmission file is then loaded 

into the IEEE 802.11a receiver and decoded. Statistics about the received and decoded 

data as well as the receiver it self is then gathered, to see how well it performs. In 

these tests, the signal is subjected to AWGN, sampling frequency drift, and 

combinations of the two.  

 

8.2.2.1 Simulation Test 1 

 

In this test, the five test images were encoded into IEEE 802.11a OFDM test data. The 

test data was NOT altered in any way, and it was given to the receiver to decode. 

Reference carrier phase compensation was disabled as part of a combined test to 

determine its influence on the receiving/decoding process. The expected results from 

these tests are errorless decoded data. The parameters for this test are shown Table 

8.2. 
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Parameter Value 

Test type and number: Simulation Test 01 

Test data images: Test Image1, Test Image2, Test Image 

3, Test Image 4, Test Image 5 

Test data set: 10 encodes of each test data image. A 

total of 50 tests. 

Total amount of digital bits transferred: 50 x 393216 = 19 660 800 bits 

= 18.75 Megabits 

Reference carrier phase compensation: Disabled 

Data influenced by AWGN? No 

Data influenced by sampling frequency 

drift? 

No 

 

Table 8.2: Simulation Test 1 parameters 

 

The results for this test are shown in Table 8.3. 

 

 Amount of times 

encoded/ decoded 

Amount of bits 

encoded/decoded 

Decoding 

Errors 

BER

Test Image 1 10 3932160 0 0 

Test Image 2 10 3932160 0 0 

Test Image 3 10 3932160 0 0 

Test Image 4 10 3932160 0 0 

Test Image 5 10 3932160 0 0 

Total 50 18,75 Megabits 0 0 

 

Table 8.3: Simulation Test 1 results 

 

The results for this test show that all the encoded data were decoded without any 

errors. This means that the initial OFDM symbol synchronisation routines, as well as 

the basic IEEE 802.11a OFDM data decoder works correctly when then there is no 

interference.   
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8.2.2.2 Simulation Test 2 

 

In this test, the five test images were encoded into IEEE 802.11a OFDM test data 

packets. The encoded signals where subjected to different SNR of AWGN. To 

compare the BER of the OFDM encoded signal to the theoretically predicted QPSK 

results calculated in Chapter 2, the AWGN added to the OFDM signals is referenced 

to each individual OFDM sub-carrier and not to the OFDM signal as a whole. The 

relationship can be calculated as [7] (2.14) 

 

dB_ QPSK 10
QPSK Signal PowerSNR 10log .

Noise Power
⎛= ⎜
⎝ ⎠

⎞
⎟

2

                        (8.1) 

 

Since the IEEE 802.11a OFDM signal has STN 5=  QPSK sub-carriers, the signal 

has 52 times more power, 

 

dB_ OFDM 10
52 QPSK Signal PowerSNR 10log ,

Noise Power
×⎛ ⎞= ⎜ ⎟

⎝ ⎠
                    (8.2) 

 

which becomes 

 

( )dB _ OFDM 10 10
QPSK Signal PowerSNR 10log 10log 52

Noise Power
⎛ ⎞= +⎜ ⎟
⎝ ⎠

             (8.3) 

 

and can finally be written as 

 

dB_ OFDM dB_ QPSKSNR SNR 17.16dB.= +                                (8.4)  

 

In this simulation test, the 17.16dB difference between the OFDM and single QPSK 

signals is ignored to see how the BER vs. SNR graphs look relative to each other. 

Reference carrier phase compensation was disabled as part of a combined test to 

determine its influence on the receiving/decoding process.  
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The expected results of this test should be values very close to values in Figure 2.6 

and Table 2.1, which is the theoretically predicted BER for a QPSK modulated signal. 

The parameters for this test are shown in Table 8.4. 

 

Parameter Value 

Test type and number: Simulation Test 02 

Test data images: Test Image1, Test Image2, Test Image 

3, Test Image 4, Test Image 5 

Test data set: 5 encodes of each test data image at 10 

SNR levels. A total of 250 tests. 

Total amount of digital bits transmitted: 250 x 393216 = 98 304 000 bits 

= 93.75 Megabits 

Reference carrier phase compensation: Disabled 

Data influenced by AWGN? Yes, 0dB to 10dB, in 1dB increments 

Data influenced by sampling frequency 

drift? 

No 

 

Table 8.4: Simulation Test 2 parameters 

 

The results for this test are shown in the Figure 8.6. 

 

The BER of the simulated OFDM signal is the same as the BER of the theoretically 

predicted QPSK modulated signal as shown by Equation (2.45), Figure 2.6 and Table 

2.1. These results further confirm the orthogonality of OFDM encoded signals and 

means that the receiver and decoder can correctly decode IEEE 802.11a OFDM 

packets in the presents of AWGN. 
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Figure 8.6: The results of Simulation Test 2 

 

8.2.2.3 Simulation Test 3 

 

In this test, the five test images were encoded into IEEE 802.11a OFDM test data 

packets. The encoded signals where subjected to four sampling frequency drifts of –

203 PPM, -102 PPM, 102 PPM and 203 PPM. With this test we can determine 

whether sampling frequency drift and the resulting sub-sample offset errors really has 

such a big influence on the receiver/decoder, as thought. Reference carrier phase 

compensation was disabled, which means the system will have no way of combating 

sampling frequency drifts and the resulting sub-sample shifts they introduce. The 

expected results of this test is a very poor performance, due to the de-synchronisation 

effects of the sampling frequency drift, the decoder should become de-synchronisation 

very early in the decoding process and decode the bulk of the data incorrectly. The 

parameters for this test are shown in Table 8.5. 
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Parameter Value 

Test type and number: Simulation Test 03 

Test data images: Test Image1, Test Image2, Test Image 

3, Test Image 4, Test Image 5 

Test data set: 5 encodes of each Test Data Image at 

the 4 different sample frequency drifts. 

A total of 100 tests. 

Total amount of digital bits transferred: 100 x 393216 = 39 321 600 bits 

= 37.5 Megabits 

Reference carrier phase compensation: Disabled 

Data influenced by AWGN? No 

Data influenced by sampling frequency 

drift? 

Yes, -203 PPM, -102 PPM, 102 PPM 

and 203 PPM 

 

Table 8.5: Simulation Test 3 parameters 

 

The results for this test are shown in Table 8.6. 

 

 Amount of files 

encoded/ 

decoded 

BER at  

–203 

PPM 

BER at  

–102 

PPM 

BER at  

102 PPM 

BER at  

203 PPM 

Test Image 1 5 0.49 0.483 0.485 0.49 

Test Image 2 5 0.49 0.484 0.485 0.49 

Test Image 3 5 0.49 0.484 0.485 0.49 

Test Image 4 5 0.49 0.483 0.485 0.49 

Test Image 5 5 0.49 0.480 0.484 0.49 

Average 5 0.49 0.483 0.485 0.49 

 

Table 8.6: Simulation Test 3 results 
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The results from this test clearly show that the system performed shockingly poor. 

The average BER for all the tests was 0.487. This value is very close to 0.5, which 

means the system was really just decoding random data. The decoder had an equal 

chance of decoding a bit as a 1 or a 0. It thus becomes clear that reference carrier 

phase compensation is very important in OFDM decoding in to keep the receiver 

synchronised to the OFDM symbols. 

 

The next test would have been a combined AWGN and sampling frequency drift test, 

where the test images are subjected to different levels of AWGN together with 

different sampling frequency drifts, with the reference carrier phase compensation 

algorithm still disabled.  

 

However, due to the fact that the current test scores had a BER of approximately 0.5, 

which is the worst possible score, corrupting the signal further with AWGN will have 

no real effect of the results. 

 

The combined AWGN and sampling frequency drift test, without reference carrier 

phase compensation will thus not be preformed. 

 

8.2.2.4 Simulation Test 4 

 

In this test, the five test images were encoded into IEEE 802.11a OFDM test data. The 

test data was NOT altered in any way, and it was given to the receiver to decode. 

Reference carrier phase compensation was enabled as part of a combined test to 

determine its influence on the receiving/decoding process. The expected results of 

these tests are errorless decoded data. The parameters for this test are shown in Table 

8.7. 
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Parameter Value 

Test type and number: Simulation Test 04 

Test data images: Test Image1, Test Image2, Test Image 

3, Test Image 4, Test Image 5 

Test data set: 10 encodes of each Test Data Image. 

Total of 50 tests 

Total amount of digital bits transferred: 50 x 393216 = 19 660 800 bits 

= 18.75 Megabits 

Reference carrier phase compensation Enabled 

Data influenced by AWGN? No 

Data influenced by sampling frequency 

drift? 

No 

 

Table 8.7: Simulation Test 4 parameters 

 

The results for this test are shown in Table 8.8 

 

 Amount of times 

encoded/ decoded 

Amount of bits 

encoded/decoded 

Decoding 

Errors 

BER

Test Image 1 10 3932160 0 0 

Test Image 2 10 3932160 0 0 

Test Image 3 10 3932160 0 0 

Test Image 4 10 3932160 0 0 

Test Image 5 10 3932160 0 0 

Total 50 18,75 Megabits 0 0 

 

Table 8.8: Simulation Test 4 results 

 

The results of this test show that all the encoded data were decoded without any error. 

This means that the reference carrier phase compensation algorithm does work, when 

there is no AWGN or sampling frequency drift.  
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8.2.2.5 Simulation Test 5 

 

In this test, the five test images were encoded into IEEE 802.11a OFDM test data 

packets. The encoded signals where subjected to different SNR of AWGN. In this test 

the reference carrier phase compensation was enabled. By comparing these results to 

the results from Simulation Test 2, it should be possible to determine whether AWGN 

has any influence on the reference carrier phase compensation algorithm. The 

expected results of this test should be values very close to that of Simulation Test 2. 

The parameters for this test are shown in Table 8.9. 

 

Parameter Value 

Test type and number: Simulation Test 05 

Test data images: Test Image1, Test Image2, Test Image 

3, Test Image 4, Test Image 5 

Test data set: 5 encodes of each Test Data Image at 

10 different SNR levels. Total of 250 

tests. 

Total amount of digital bits transferred: 250 x 393216 = 98 304 000 bits 

= 93.75 Megabits 

Reference carrier phase compensation: Enabled 

Data influenced by AWGN? Yes, from 0dB to 10dB, in 1dB 

increments 

Data influenced by sampling frequency 

drift? 

No 

 

Table 8.9: Simulation Test 5 parameters. 

 

The results for this test are shown in Figure 8.7. 
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Figure 8.7: BER vs. SNR of the OFDM signal (with and without the reference carrier 

phase correction enabled) and a QPSK modulated signal. 

 

From these results we can clearly see a difference between the AWGN tests where the 

reference carrier phase compensation algorithm where enabled and disabled. The 

average difference is approximately 1.2 dB. The reason for this is that AWGN 

influences all the OFDM sub-carriers, including the reference carriers. There is no 

induced sampling frequency drift in this test, but the noise on the reference carriers do 

influence the reference carriers’ phases. This fools the algorithm in thinking that there 

is some small sampling frequency drift. The reference carrier phase compensation 

algorithm then attempts to correct these apparent drifts and by doing so causes more 

decoding errors. This is referred to as the reference carrier phase compensation 

implementation loss due to AWGN. Better algorithm programming could improve 

this, but probably never eliminate it completely. 
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8.2.2.6 Simulation Test 6 

 

In this test, the five test images were encoded into IEEE 802.11a OFDM test data 

packets. The encoded signals where subjected to four sampling frequency drifts of –

203 PPM, -102 PPM, 102 PPM and 203 PPM. With the reference carrier phase 

compensation ability enabled, we can determine how well the algorithm compensates 

sampling frequency drift, when no noise is present. The expected result of this test is 

an errorless performance. The reference carrier phase compensation algorithm should 

be able to effortlessly correct the sampling frequency drift and compensate for the 

resulting phase errors. The parameters for this test are shown in Table 8.10. 

 

Parameter Value 

Test type and number: Simulation Test 06 

Test data images: Test Image1, Test Image2, Test Image 3, 

Test Image 4, Test Image 5 

Test data set: 5 encodes of each Test Data Image at 4 

different sample frequency drifts.  

A total of 20 tests. 

Total amount of digital bits transferred: 20 x 393216 = 7 864 320 bits 

= 7.5 Megabits 

Reference carrier phase compensation: Enabled 

Data influenced by AWGN? No. 

Data influenced by sampling frequency 

drift? 

Yes, -203 PPM, -102 PPM, 102 PPM and 

203 PPM 

 

Table 8.10: Simulation Test 6 parameters. 

 

The results for this test are shown in Table 8.11. 
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 Amount of files 

encoded/ 

decoded 

BER at  

–203 

PPM 

BER at  

–102 

PPM 

BER at  

102 PPM 

BER at  

203 PPM 

Test Image 1 5 0 0 0 0 

Test Image 2 5 0 0 0 0 

Test Image 3 5 0 0 0 0 

Test Image 4 5 0 0 0. 0 

Test Image 5 5 0 0 0 0 

Average 5 0 0 0 0 

 

Table 8.11: Simulation Test 6 results. 

 

The results from this test show that the reference carrier phase compensation 

algorithm was able to correctly re-synchronise and compensate the induced phase 

errors in the OFDM signals subjected to sampling frequency drift. 

 

8.2.2.7 Simulation Test 7 

 

In this test, the five test images were encoded into IEEE 802.11a OFDM test data 

packets. The encoded signals where subjected to different SNR of AWGN as well as 

four sampling frequency drifts of –203 PPM, -102 PPM, 102 PPM and 203 PPM. The 

combined AWGN and sampling frequency drift tests, with the reference carrier phase 

compensation enabled, simulates the most important performance influencing factors, 

and should give results which closely correlates with the results from the real-time 

implementation tests later. The parameters for this test are shown in Table 8.12. 

 

 

Parameter Value 

Test type and number: Simulation Test 07 

Test data images: Test Image1, 2, 3, 4 and 5 

Test data set: 2 encodes of each Test data Image at 10 different 

SNR levels, and 4 different sample frequency drifts. 

Total of 400 tests. 
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Parameters for simulation test 7 continues… 

Parameter Value 

Total amount of digital bits 

transferred: 

400 x 393216 = 157 286 400 bits 

= 150 Megabits 

Reference carrier phase 

compensation: 

Enabled 

Data influenced by AWGN? Yes, from 0dB to 10dB, in 1dB increments 

Data influenced by 

Sample frequency drift? 

Yes, -203PPM, -102PPM, 102PPM and 203PPM 

 

Table 8.12: Simulation Test 7 parameters. 

 

The results for this test are displayed in Figure 8.8. 

  

 
 

Figure 8.8: Simulation BER vs. SNR of the OFDM signal with reference carrier 

phase compensation, with AWGN, and sampling frequency drift. 
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The results from this test follow the results from the previous test, but shows an 

additional implementation lost of approximately 1dB at a SNR of 10dB (purely due to 

the sampling frequency drift).  

 

8.2.2.8 Simulation Test Conclusions 

 

From the seven simulation tests we can conclude that 

• The OFDM receivers’ initial OFDM symbol synchronisation algorithm works. 

• The OFDM receiver decodes data successfully when there are no influencing 

factors involved. 

• The OFDM receiver sub-carrier demodulation algorithms correctly decode 

OFDM sub-carriers in the presence of AWGN. 

• Reference carrier phase compensation is clearly needed when OFDM data 

packets are subjected to sampling frequency drifts. 

• The reference carrier phase compensation works.  

• The reference carrier phase compensation algorithm has a 1.2dB 

implementation loss due to AWGN only.  

• The reference carrier phase compensation algorithm has a 1 dB 

implementation loss due to sampling frequency drift. 

 

8.2.3 Initial Sound Device Transmission Tests 

 

Initial sound device transmission tests specifically test the sound device and the 

communications channel. These tests encode test data into IEEE 802.11a OFDM 

packets and then transmit it over the communications channel. The receiving system 

receives the incoming transmission and then records it a local file. This local file, 

representing the IEEE 802.11a OFDM packet, is then decoded using the same 

procedures and algorithms as the previous simulation tests. The extensive simulation 

test results, and the already tested OFDM decoding algorithms, should give us a fairly 

good idea of how the system will react to these transmission tests as well as the real-

time tests later. 
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8.2.3.1 Communications Channel Estimation 

 

As described in Section 5.2.5, channel estimation is done to counteract the effects of 

an uneven channel transfer function. To determine the communication channel and 

sound device transfer function, we need to create a signal with a flat and infinite 

bandwidth. The impulse signal does this, as shown in the following Fourier Transform 

pair 

 
DFT(n) 1.δ ⎯⎯⎯→                                                   (8.5) 

 

The impulse was transmitted over the communications channel and recorded at the 

receiver. The impulse response is shown in the Figure 8.9. 

 

 
Figure 8.9: Impulse response of the communications channel and sound device 

 

The communication channel and sound device transfer function was calculated by 

taking the DFT of the IEEE 802.11a long preamble. As we can see from Figure 8.10, 

the IEEE 802.11a receiver will indeed need to compensate for the effects of the 

communication channel transfer function. 
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Figure 8.10: Transfer function of the communications channel and sound device 

 

8.2.3.2 Determining Sampling Frequency Drift. 

 

The reference carrier phase compensation algorithm can calculate the sound devices’ 

sampling frequency drift during the OFDM data symbol decoding process. The 

algorithm keeps a record of all the decoded OFDM data symbols’ calculated sub-

sample offset. By determining the rate of change of the sub-sample offset during the 

decoding process, it is possible to calculate the sampling frequency drift. 

 

The gradient is calculated from Figure 8.11, as  

 

( ) ( )
( ) ( )

Sub-sample offset at Point B Sub-sample offset at Point A
Grad(A, B) ,

Symbol number at point B Symbol number at point B
−

=
−

 

 

( ) ( )
( ) ( )

1312 1224 88Grad(A, B) 95.32
1.0377 0.1145 0.9232

−
= =

−
=  
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Figure 8.11: Calculated sub-sample offset and resulting sample frequency drift 

 

This basically means that the decoder will advance 1 sample after every 95.32 OFDM 

data symbols is decoded. Since every OFDM symbol, together with its cyclic prefix / 

guard interval is exactly 80 samples in duration. The Gradient can be converted into a 

sampling frequency drift, 

 

1e6Sample Frequency Drift = 131.14 PPM.
80 Grad(A,B)

=
×

               (8.6) 

 

The sample frequency drift is thus calculated as 131.14 PPM. This further confirms 

that sampling frequency drift is a real issue, especially with such relatively simple 

hardware as a personal computer sound device. 

 

8.2.3.3 AWGN performance Test 

 

In this test, the five test images were encoded into IEEE 802.11a OFDM test data 

packets. The encoded signals where subjected to different SNR of AWGN and 

transmitted over the communications channel. The receiving computer recorded the 
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transmission and gave it to the IEEE 802.11a OFDM decoder to decode. The 

reference carrier phase compensation was enabled. The parameters for this test are 

shown in Table 8.13. 

 

Parameter Value 

Test type and number:  Initial Sound Device Transmission Test 1

Test data images: Test Image1, Test Image2, Test Image 3, 

Test Image 4, Test Image 5 

Test data set: 5 encodes of each Test Data Image at 10 

different SNR levels. Total of 250 tests. 

Total amount of digital bits transferred: 250 x 393216 = 98 304 000 bits 

= 93.75 Megabits 

Reference carrier phase compensation: Enabled 

Data influenced by AWGN? Yes, from 0dB to 10dB, in 1dB 

increments 

Data influenced by sampling frequency 

drift? 

No 

 

Table 8.13: Initial Sound Device Transmission Test parameters. 

 

The results for this test are shown in the Figure 8.12. 

 

The results show that the initial sound device AWGN test results performed very 

close to the simulated sampling frequency drift results as determined in simulation 

test 7. This is a good sign, and shows that the simulations are in fact accurate 

representations of the real life implementation of the system. It should be noted that 

the OFDM decoder sometimes had trouble decoding some of the 0dB test images as 

the signal was too poor and the decoder could not successfully synchronise to the 

IEEE 802.11a OFDM packets. 
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Figure 8.12: Initial Sound Device Transmission AWGN Test, BER vs. SNR. 

 

8.2.3.4 Initial Sound Device Transmission Test Conclusions 

 

From the initial sound device transmission tests, we can conclude that: 

• Communication channel transfer function and impulse response is a real issue. 

Channel estimation is needed for modulation techniques that depend on signal 

amplitudes. 

• Sampling frequency drift is also a real issue, even when using relatively 

simple and slow sampling devices like computer sound cards. This further 

emphasises the need for reference carrier phase compensation and continuous 

OFDM symbol re-synchronisation algorithms, even if they do introduce an 

implementation loss. 

• The results from the initial sound device AWGN transmission tests are very 

close to the results from the final simulation test. This means that the 

simulations are in fact accurate representations of the real life implementation 

of the system. 
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8.2.4 Real-time Buffered Transmission Tests 

 

Real-time buffered transmissions tests are the final data performance tests. The 

transmitter encodes test data into an IEEE 802.11a OFDM data packet and transmits it 

over the communications channel. The receiver stores the incoming signal in a 

receiving buffer, and then attempts to decode the IEEE 802.11a OFDM data packet in 

the buffer. The transmission signal is influenced by different levels of AWGN to 

determine how well the transceiver system works. 

 

8.2.4.1 The Test Data Set 

 

The real-time buffered transmission tests use different test data than the previous 

simulation and initial sound device transmission tests. The new test data packets 

contain 6144 bytes (49152 bits) of data. Using the current OFDM encoding 

parameters, these smaller data packets will occupy only 512 IEEE 802.11a OFDM 

data symbols instead of the 4096 that the test images occupy. This reduces the 

transmission time to approximately 1 second and helps speed up the performance 

tests. Please refer to Section 7.5.1.6 for more information. The three test data packets 

each have random bits of data. 

 

8.2.4.2 AWGN Performance Tests 

 

In this test the three test data packets where encoded into IEEE 802.11a OFDM test 

data packets. The encoded signals where subjected to different SNR of AWGN and 

transmitted over the communications channel. The receiving computer running the 

IEEE 802.11a encoding/decoding Demo GUI received the signals, buffered it and 

attempted to decode it. The reference carrier phase compensation algorithm was 

enabled.  The parameters of this test are shown in Table 8.14.  
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Parameter Value 

Test type and number:  Real-time Buffered Transmission Test 1 

Test data packets Test Data Packet 1, 2 and 3 

Test data set: 5 encodes of each Test Data packet at 10 

different SNR levels. Total of 150 tests. 

Total amount of digital bits transferred: 150 x 49152 = 7 372 800 bits 

= 7.035 Megabits 

Reference carrier phase compensation Enabled 

Data influenced by AWGN? Yes, from 0dB to 10dB, in 1dB 

increments 

Data influenced by sampling frequency 

drift? 

No 

 

Table 8.14: Real-time Buffered Transmission Test parameters. 

 

The results for this test are shown in Figure 8.13. 

 

 
 

Figure 8.13: Real-time Buffered Transmission AWGN Test, BER vs. SNR. 
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The results show that the real-time buffered transmission AWGN test preformed very 

close to the initial sound device transmission AWGN test as well as the simulated 

sampling frequency drift results as determined in simulation test 7. This means that 

the IEEE 802.11 transceiver works and that the sound card drivers interfaced 

successfully with the IEEE 802.11a decoding software.  

 

8.2.4.3 Final IEEE 802.11a OFDM decoder performance Graph 

 

In Section 8.2.2.2 we determined that there is in actual fact a 17.16dB difference 

between the AWGN BER graphs for QPSK modulated signals and OFDM modulated 

signals using QPSK as sub-carrier modulation.  Finally it is possible to display the 

IEEE 802.11a OFDM performance graph when the signals are influenced by AWGN 

and referenced to the entire OFDM signal and not to a OFDM sub-carrier. 

 

 
 

Figure 8.14: Final Real-time Buffered Transmission AWGN Test, BER vs. Complete 

OFDM Signal SNR. 
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8.2.4.4 Real-time Buffered Transmission Test Conclusions 

 

From the real-time buffered transmission tests, we can conclude that: 

• The real-time buffered transmission tests work. 

• That the sound card interface to the IEEE 802.11a OFDM decoder works. 

• The results from this test are very close to what we expected with the initial 

sound device transmission AWGN tests and the final simulations tests. 

 

8.3 Speed Performance Tests and Results 

 

Speed performance tests determine the IEEE 802.11a OFDM packet encoding and 

decoding times on the two different hardware platforms. These tests play a role in 

determining the different buffer lengths as well whether the current software will be 

able to encode and decode the full bandwidth 20 MHz IEEE 802.11a OFDM data 

packets. 

 

8.3.1. Encoding Speed Tests 

 

Encoding speed tests measure the time it takes the software to encode IEEE 802.11a 

data packets when it is given the encoding data. The test images as well as the test 

data packets where encoded and timed. These tests are performed on both the 

transmitter and receiver hardware platforms as described in Chapter 7. The parameters 

form this test are shown in Table 8.15. 

 

Parameter Value 

Test type and number:  Speed Test 01 - Encoding 

Test data packets: Test Data Packet 1,2 and 3 

Test Image 1,2 and 3 

Test data set: 5 encodes of each test file. Total 30 tests. 

Total amount of digital bits encoded: 15 x 49152  + 15 x 393216 bits 

= 6.328 Megabits 

 

Table 8.15: Speed Test 1 parameters. 
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The results from the encoding speed test 1 is shown in Table 8.16. 

 

The Encoding Times  Hardware 

Platform1 

Hardware 

Platform2 

Average Test Image Encoding Time  

(encoding time per bit) 

486 ms 

(1.236 us) 

1045 ms 

(2.657 us) 

Average Test Data Packet Encoding Time 

(encoding time per bit) 

66 ms 

(1.342 us) 

136 ms 

(2.767 us) 

 

Table 8.16: Speed Test 1 results 

 

8.3.2 Decoding Speed Tests 

 

Decoding speed tests measure the time it takes the software to decode IEEE 802.11a 

data packets when the whole signal is given to the decoder. The test images as well as 

the test data packets where encoded and saved to file. These files where then given to 

the receiver to decode and the decoding process was timed. These tests are performed 

on both the transmitter and receiver hardware platforms as described in Chapter 7. 

The parameters form this test are shown in Table 8.17. 

 

Parameter Value 

Test type and number:  Speed Test 02 - Decoding 

Test data packets: Test Data Packet 1,2 and 3 

 Test Image 1,2 and 3  

Test data set: 5 encodes of each test file. Total 30 tests. 

Total amount of digital bits decoded: 15 x 49152  + 15 x 393216 bits 

= 6.328 Megabits 

Reference carrier phase compensation Both On and Off states tested 

Data influenced by AWGN? No 

Data influenced by sampling frequency 

drift? 

No 

 

Table 8.17: Speed Test 2 parameters 
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The results from this test are shown in Table 8.18. 

 

The Decoding Times  

(decoding time per bit) 

Hardware 

Platform1 

Hardware 

Platform2 

Average Test Image Decoding Time with 

Reference Carrier Phase Compensation Enabled 

1312.5 ms 

(3.34 us) 

2380 ms 

(6.05 us) 

Average Test Image Decoding Time with 

Reference Carrier Phase Compensation Disabled 

770 ms 

(1.96 us) 

1445 ms 

(3.68 us) 

Average Test Data Packet Encoding Time with 

Reference Carrier Phase Compensation Enabled 

198 ms 

(4.03 us) 

313 ms 

(6.37 us) 

Average Test Data Packet Encoding Time with 

Reference Carrier Phase Compensation Disabled  

140 ms 

(2.85 us) 

176 ms 

(3.58 us) 

 

Table 8.18: Speed Test 2 results 

 

8.3.3. Conclusions on Speed Performance Tests 

 

By using Equations (6.2), (7.1) and (7.2) it is possible to calculate the test image and 

test data packet transmission times for both the full bandwidth (20 MHz) and the low 

bandwidth (44.1 kHz) signals. The results are shown in Table 8.19. 

 

Transmission Times 

(transmission time per bit) 

Full Bandwidth 

(20 MHz) signal 

Low Bandwidth  

(44.1 kHz) signal 

Test Images 16.404 ms 

(41.72 ns) 

7.44 ms 

(18.92 us) 

Test Data Packets 2.068 ms 

(42.07 us) 

0.94 us 

(19.12 us) 

 

Table 8.19: IEEE 802.11a Transmission times for full and low bandwidth signals 

 

According to queuing theory [13], a system will only be stable when its service time, 

in this case the length of time the system takes to decode the data, is shorter than the 

data arrival rate, which is the transmission time and the encoding time.  
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The average encoding time on hardware platform 1 was 1.29 us per bit but the 

average decoding time, with the reference carrier phase compensation enabled on 

hardware platform 1 was 3.69 us per bit. So the system takes longer to decode a signal 

than to encode it. The average transmission time for the full bandwidth signal is only 

41.9 ns per bit and does not influence the arrival rate. The average transmission time 

for the low bandwidth signal is 19 us per bit which is slow enough to give the decoder 

chance to finish its work. The results from speed test 1 and 2 show that the current 

software will not be able to support full bandwidth (20 MHz) real-time IEEE 802.11a 

signals. The low bandwidth (44.1 kHz) IEEE 802.11a signals on the other hand has 

sufficiently large transmission time: the decoder has enough time to finish decoding 

and will thus work. 

 

If we look at the results of the speed tests done on hardware platform 1 (the faster of 

the two hardware platforms) we see that the test image encoding time is 486ms and 

the test image decoding time is 1312.5ms. The full bandwidth (20MHz) transmission 

time of a test image (8.7) is 16.404ms. From these results we can conclude that: 

• The decoding time is far longer than the combined encoding time and 

transmission time. This means that the receiver will not be able to stay ahead 

in decoding received data. The buffer will finally overflow because the system 

is unstable. 

• For this transceiver system to work well and the available bandwidth to be 

used efficiently, both the encoding and decoding times must be made smaller 

that the transmission time. 

• This IEEE 802.11a transceiver system will not be able to cope with 20 MHz 

IEEE 802.11a signals, and must be made faster. 

 

The results from the IEEEE 802.11a packet encoding and decoding speed tests and 

the tests done on hardware platform 2, all come to these same conclusions: The 

software is currently not fast enough to cope with full bandwidth (20MHz) IEEE 

802.11a signals. Please refer to the final chapter about recommendations on speeding 

up the system. 
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8.4 Conclusions 

 

The IEEE 802.11a based transceiver system was programmed in C++ and 

implemented on the hardware platform as shown in the previous chapter.  The 

software was then put through a series of tests to determine how well it worked. A 

series of simulation tests showed that the results from the implemented decoder 

indeed followed the theoretically predicted values from Chapter 2. It was also shown 

that phase compensation due to sub-sample offset resulting from sampling frequency 

drift is essential. The implemented reference carrier phase compensation algorithm 

introduced a 1 – 1.2 dB implementation loss due to AWGN. The algorithm also 

showed a further 1dB implementation loss when decoding signals effected by 

sampling frequency drift. The initial sound device transmissions tests and buffered 

real-time test results was very close to the final simulated results which means the 

simulations are a very close approximation of the real-life system. Further encoding 

and decoding speed tests, have determined that although the current software works 

for the (low-speed) low-bandwidth version of the IEEE 802.11a signal, it will not be 

able to sustain continuous decoding of the full bandwidth (20 MHz) IEEE 802.11a 

signal. The decoder and encoder are just too slow. The following and final chapter in 

this thesis concludes everything and has some recommendations on upgrading the 

IEEE 802.11a transceiver. 
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Chapter 9 
  

Conclusions 
  

9.1 Introduction 

 

This thesis describes the implementation of an OFDM transceiver system as part of a 

SDR environment. Orthogonal Frequency Division Multiplexing, a subset of 

Frequency Division Multiple Access, is a multi-carrier modulation technique that 

encodes digital data into closely packed orthogonal sub-carriers. Orthogonality 

ensures that there is no interference between the sub-carriers. The overview into 

digital modulation techniques shows us how digital data bits can be encoded onto 

sinusoidal carrier waves. These techniques form the foundation for multi-carrier 

modulation schemes such as OFDM and can be used as reference when comparing the 

performance results. OFDM mathematics is studied and expanded into processes 

where digital data can be encoded and decoded into and from OFDM data symbols in 

a digital domain. The transmission of OFDM symbol trains across communications 

channels is prone to many performance-influencing factors. These factors are 

identified and methods the overcome them are determined and analysed in detail.  The 

implementation of the OFDM transceiver system is based on the IEEE 802.11a 

standard for encoding and decoding OFDM signals. The IEEE 802.11a standard is 

very robust in handling these performance influencing factors and is a very efficient 

OFDM implementation. The SDR implementation of the IEEE 802.11a based 

transceiver system is done in a programming language called C++.  The sound cards 

in two personal computers (hardware platforms) are connected together using 

standard stereo copper wires. IEEE 802.11a OFDM data is then encoded and 

transmitted from the one computer and received and decoded by the other. The 

software is put through different simulation and transmission tests influenced by 

AWGN and sampling frequency drift to determine the system performance. The final 

real-time data performance tests had an approximate 2.2dB implementation loss but 

still performed as expected and very close to the final simulated test results. 
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9.2 The IEEE 802.11a Standard and OFDM Modulation 

 

OFDM modulation is a very attractive digital modulation technique and has its fair 

share of advantages and disadvantages. Some of these advantages are: 

 

• OFDM is scalable in frequency and data rates. 

• High bandwidth efficiency. 

• Does not require channel equalisation. 

• Flexible and adaptive; bit loading of different sub-carriers. 

• Good at mitigating the effect of narrowband interferences. 

• Does not require a phase lock loop. 

 

Some of the disadvantages of OFDM include: 

 

• OFDM is very processor intensive. 

• High PAPR problems and dynamic range issues. 

• Very sensitive to sampling frequency drift and phase noise. 

• Precise OFDM symbol synchronisation is very important. 

 

The IEEE 802.11a OFDM standard was designed for environments such as offices 

where office furniture and other objects might cause large multipath delays. High data 

rate single-carrier modulation techniques have very short symbol periods that need 

considerable channel equalisation when influenced by large multipath delays. OFDM 

can obtain the same data rates but will still have relatively long symbol periods. The 

long OFDM symbol periods are influenced much less by multipath delays, especially 

with the addition of guard intervals. Office environments also generally have many 

electronic devices of which some might purposefully and others inadvertently 

transmit radio waves within the OFDM signal spectrum. This narrowband interference 

will interfere only with a few OFDM sub-carriers, leaving the rest untouched (due to 

the orthogonality). Influencing the wideband spectrum of high-data-rate single-carrier 

modulation signals will influence the whole signal, and ultimately cause continuous 

decoding errors for the duration of the interference. The advantages that IEEE 

802.11a OFDM modulation have over other modulation techniques, especially in the 
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office environment, does however come at a cost. OFDM modulation is quite 

processor intensive. For each OFDM data symbol that is decoded a DFT or FFT 

transform is needed. OFDM is also very sensitive to sampling frequency drift, which 

causes long term de-synchronisation of the OFDM symbol train and phase errors in all 

sub-carriers. The IEEE 802.11a OFDM standard utilises so many techniques for 

combating all the different performance influencing factors that finally a sizable 

percentage of the available bandwidth and time is used to make sure the data quality is 

acceptable. The bandwidth efficiency can be calculated as the percentage of data sub-

carriers over the total usable sub-carries, 

 

SD
f

ST

N 48n 0.923 or 92.3%.
N 52

= = =                                   (9.1) 

 

The time signal efficiency can be calculated as the actual data signal time over the 

total OFDM signal time, 

 

FFT
t

SYM

T 3.2usn 0.8 or 80%.
T 4.0us

= = =                                    (9.2) 

 

The total efficiency can be calculated as the product of the bandwidth and time signal 

efficiencies, 

f tn n n 0.8*0.923 0.738 or 73.85%.= ∗ = =                            (9.3) 

 

This means that the final IEEE 802.11a OFDM system uses 26.15% of its available 

time and bandwidth resources just to make sure the decoded signal quality is 

acceptable. With the rising cost and scarcity of available bandwidth one can ask 

whether IEEE 802.11a should be used at all. On the one hand, IEEE 802.11a utilises a 

part of the frequency spectrum called the ISM band, which is an unlicensed band and 

free for all to use. By using a part of the frequency spectrum that is free one could 

argue that since no one is paying for it, it doesn’t really matter if we waste a small part 

of it, if it would ensure a good performance. In such a case the use of IEEE 802.11a in 

office environments is a very good choice. On the other hand, it is not in the least 

surprising to find that the IEEE 802.11 standards now already include various 
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upgrades after the IEEE 802.11a standard, such as IEEE 802.11b, IEEE 802.11n and 

IEEE 802.11g. 

 

9.3 Software Defined Radio 

 

Software defined radio is a very interesting and noble idea for the future development 

of new radio communications devices as well as other types of electronic devices. It is 

a fact that with the advances in technology, processors are becoming smaller and 

more powerful. This thesis is not however involved in the development of SDR 

equipment. The software written for the purpose of this thesis was tested on a personal 

computer, which could be seen as a very powerful SDR device, but which is not the 

final intended implementation of this system. As to date the SDR group at the 

University of Stellenbosch’s electronic engineering faculty is still relatively new, and 

a generic hardware platform is not yet ready for use.  

 

9.4 Notes on the C++ software 

 

The C++ software was written to be generic and modular, and to use the most 

common C++ functions and libraries so it would be compatible with most of the 

existing C++ compilers available for embedded systems. For this reason complex 

values used in the different functions where handled as two separate values, one for 

the real and the other the imaginary part of the complex value. In other cases, the 

magnitude and phase representation of the complex value were used. Furthermore, it 

seems that there is still a small problem with the Port Audio sound card interface 

software. It seems that there might still be an error in the recording and/or playback 

callback functions in the OFDM_audio library. During recording callbacks when the 

receiver is receiving and buffering the incoming OFDM transmission, some small 

buffer segments get lost or skipped. This causes catastrophic failure in the OFDM 

decoding algorithm, since it translates to synchronisation errors larger than what the 

decoder is set to handle. The IEEE 802.11a transceiver software works as it is, but 

might not be running optimally and a more experienced programmer might be able to 

streamline the software and even improve the data performance results. 
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9.5 SDR Performance Tests 

 

The IEEE 802.11a OFDM transceiver system was tested to determine how well the 

software performed in different circumstances. Seven simulations tests tested the 

performance of the decoder, by letting it decode artificially influenced OFDM signals. 

It was found that the basic decoder with the reference carrier phase compensation 

algorithm disabled performed precisely as predicted in the presents of AWGN. The 

BER graph followed the theoretically predicted results very closely. The same test, 

but with the reference carrier phase compensation enabled, showed a 1 – 1.2dB 

implementation loss. This basically means that the noise on the reference carriers 

affects the phase compensation and causes extra decoding errors. In the simulation 

tests where the OFDM signal was influenced by sampling frequency drift, the 

performance results showed another 1dB implementation loss. What this means is that 

the reference carrier phase compensation algorithm was unable to completely mitigate 

the resulting phase shifts on the sub-carriers. Finally, the initial sound device 

transmission test results and the real-time buffered test results are so to say the same 

as the final simulation tests. This is very good since it means that our simulations are a 

very close approximation of the real-life system. We can now see from the different 

simulation tests which part of the transceiver caused the different implementation 

losses and could need some extra work. The final IEEE 802.11a OFDM transceiver 

performance graphs can be seen in Figures 8.13 and 8.14. The IEEE 802.11a 

transceiver system was further tested and put through a series of speed tests. These 

tests timed the IEEE 802.11a packet encoding and decoding processes. It was found 

that the current software and hardware platform would not be able to continuously 

receive and decode full bandwidth (20MHz) IEEE 802.11a packets as intended by the 

IEEE 802.11a specifications. The current software is just too slow. 
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9.6 Future Work and Research 

 

Future work on the IEEE 802.11a OFDM software include: 

• Programming and implementing a convolutional encoder and decoder. 

• Expanding the sub-carrier modulation software to include BPSK, 16-QAM 

and 64-QAM encoders and decoders. 

• Improving the reference carrier phase compensation algorithms for better 

noise performance and faster operation. 

• Optimising and streamlining the existing algorithms. 

• Converting the DFT and IDFT function to FFT and IFFT functions to make 

the system run faster. 

 

Future work on the IEEE 802.11a OFDM hardware include: 

• Using a high bandwidth ADC and DAC instead of the computer sound card to 

use the full IEEE 802.11a OFDM bandwidth. 

• Replacing the stereo copper cables which act as the communications medium 

with a appropriate analogue front-end and antenna.  

• Porting the IEEE 802.11a software to an embedded system and creating a 

complete IEEE 802.11a transceiver. 

 

Additional tests to be done on the IEEE 802.11a OFDM system 

• Testing the multipath effect on the IEEE 802.11a transceiver data performance 

after upgrading the hardware with high bandwidth ADC’s DAC’s and 

analogue front ends. 

• Testing the data performance after the convolutional encoding FEC software is 

installed. 

 

9.7 Comparing against other existing OFDM systems. 

 

Due to the lack of an appropriate RF front-end for transmitting and receiving the 

IEEE 802.11a OFDM packets over the air, we are unable to test the currently 

implemented IEEE 802.11a transceivers’ multipath performance. Multipath fading is 

a definite performance-influencing factor for any RF transceiver system.  
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To get a general idea of how multipath affects RF transceiver systems, the results 

from this thesis were compared against simulated results in [26]. In [26] the 

performance of an OFDM modulated signal with QPSK sub-carriers as well as a 

single-carrier high-speed QPSK signal were simulated over different fading channels. 

In one of the simulations the two modulated signals were given extra error correction 

capability. The receiver had the ability of correcting 6 bits in each 64-bit packet. Their 

performances where simulated over a two-path Rayleigh fading channel. (Basically a 

Rayleigh fading channel is a non-line-of-sight channel. In this simulation the two 

Rayleigh channels had equal power). The BER performance of the two modulated 

signals, each with and without the error correcting ability, together with the results 

from our real-time buffered transmission test and simulation test 2 (OFDM QPSK 

with no influences) were compared. The resulting graph in Figure 9.1 shows the 

relative performances. 

 
 

Figure 9.1: Implemented IEEE 802.11a transceiver comparison graph 

 

The 12dB difference between our real-time buffered transmission graph and the un-

coded OFDM-QPSK BER graph from [26] shows us just how devastating multipath 

effects can be.  
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Just as interesting is the ability of the error correction to correct faulty bits and to 

boost the data quality from a relative 12dB implementation loss to a mere 3dB. The 

error correction scheme thus introduced a 9dB coding gain, which is very impressive.  

 

From these results it is clear that multipath and error correction both play big roles in 

influencing the performance of RF transmitted signals. They would thus undoubtedly 

also influence the performance of our implemented IEEE 802.11a transceiver once it 

is fully implemented. 

 

9.8 Conclusions 

 

The IEEE 802.11a OFDM transceiver system build for the purpose of this thesis 

works and has an approximate 2.2 dB data performance implementation loss. 
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Appendix A 
  

Useful Mathematical Proofs 
 
A.1 Useful Trigonometry Functions:  
 
 

sin(a b) sin(a) cos(b) cos(a) sin(b)+ = +                              (A.1) 
 

sin(a b) sin(a) cos(b) cos(a) sin(b)− = −                              (A.2) 
 

cos(a b) cos(a) cos(b) sin(a)sin(b)+ = −                              (A.3) 
 

cos(a b) cos(a) cos(b) sin(a)sin(b)− = +                              (A.4) 
 

 ( )( )2sin (x) 0.5 1 cos(2x)= −                                       (A.5) 
 

( )( )2cos (x) 0.5 1 cos(2x)= +                                       (A.6) 
 
 
A.2 Finding The Zero-points of a Sinc Waveform 

 

A sinc can be expressed as 

 

sin( ft)sinc(ft) .
ft
π⎛= ⎜ π⎝ ⎠

⎞
⎟                                            (A.7) 

 

The sinc zeroes are found where sin( ft) 0π = , and we know that a sine wave is equal 

to zero every 180 degrees or π  radians, 

 

sin( ) 0   where  m     ;   m [ ,...,0,..., ].φ = φ = π ∈ −∞ ∞                     (A.8) 

 

If we now substitute the parameters for the sine wave from (A.7) into Equation (A.8) 

we get 

sin( ft) 0   where  ft m     ;   m [ ,..., 0,..., ].π = π = π ∈ −∞ ∞                  (A.9) 
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This means that the sine wave from Equation (A.7) has zeroes at the following 

locations, 

msin( ft) 0   where  f     ;   m [ ,...,0,..., ].
t

π = = ∈ −∞ ∞                  (A.10) 

 

This means that the sinc waveform (A.7) has zeroes at the same locations as (A.10) so 

that 

msinc( ft) 0   where  f     ;   m [ ,...,0,..., ].
t

π = = ∈ −∞ ∞                 (A.11) 

 

By choosing m=0, t and f becomes zero and (A.11) produces an undefined and 

unusable result 

  

sin(0) 0sinc(0)    (undefined).
0 0

⎛ ⎞= =⎜ ⎟
⎝ ⎠

                             (A.12) 

 

(A.12) is solved by applying L’Hospital’s rule to (A.7), 

 

t 0

d sin( ft)
dtsinc(0) lim ,d ft

dt
→

⎛ ⎞π⎜ ⎟
= ⎜

⎜ ⎟π
⎝ ⎠

⎟                                      (A.13) 

 

which reduces to 

 

( )
t 0

sinc(0) lim cos( ft) 1.
→

= π =                                      (A.14) 

 

The value of the sinc function for an integer-valued argument can finally be expressed 

as 

 

m  0;   where  f   ;   m [1, 2,..., ]
sinc(ft) .t

  1;   where  f 0

⎧ ⎫= ∈ ∞⎪ ⎪= ⎨ ⎬
⎪ ⎪=⎩ ⎭

                 (A.15) 
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A.3 RMS of a sine wave 

 

If a sinusoidal signal is given by y(t) so that 

 

y(t) A cos(2 ft ).= ∗ π + φ                                         (A.16) 

 

The Root-Mean-Square (RMS) of (A.16) can be calculated as 

 

T
2

RMS
0

1y (t) y (t)dt .
T

⎛ ⎞
= ⎜

⎝ ⎠
∫ ⎟                                       (A.17) 

 

Substituting the sinusoidal signal (A.16) into Equation (A.17) gives 

 

T
2 2

RMS
0

1y (t) A cos (2 ft )dt
T

⎛ ⎞
= π⎜

⎝ ⎠
∫ .+ φ ⎟                             (A.18) 

 

Substituting the trigonometry function (A.9) into Equation (A.18) yields 

 

T2

RMS
0

Ay (t) 1 cos(4 ft )dt
2T

⎛ ⎞
= + π + φ⎜

⎝ ⎠
∫ .⎟                              (A.19) 

 

Equation (A.19) can then be reduced to 

 

T T2 2

RMS
0 0

A Ay (t) 1dt cos(4 ft )dt
2T 2T

⎛ ⎞
= + π + φ⎜ ⎟

⎝ ⎠
∫ ∫ .                       (A.20) 

 

Equation (A.20) can further be reduced to 

 

[ ]T2 2
0

RMS

sin(4 ft )A Ay (t)
2 2T 4 f

⎛ ⎞π + φ
⎜ ⎟= +
⎜ ⎟π⎝ ⎠

.                        (A.21) 
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This gives 

2 2

RMS
A A sin(4 fT )y (t)
2 2T 4 f

⎛ ⎞
.π + φ

= +⎜ π⎝ ⎠
⎟                              (A.22) 

 

The integral of the sine wave is zero for all multiples of 2π , thus (A.22) will become 

 

2

RMS
A Ay (t)
2 2

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
.                                        (A.23) 

 

 

 

 

 

 176



Appendix B 
  

Digital Modulation Schemes 
 

B.1 Binary Phase Shift Keying (BPKS) modulation 

 

A BPSK encoder takes one digital data bit (b0) and converts it to one of 2 possible 

complex values represented by its I (real) and Q (imaginary) channel value. 

 

 

Input Bit (b0) I-Out Q-Out 

0 -1 0 

1 1 0 

 

Table B.1: BPSK encoding table 
 

Figure B.1: BPSK constellation bit 

encoding 

 

B.2 Quadrature Phase Shift Keying (QPSK) encoding 

 

A QPSK encoder takes two digital data bits (b0b1) and converts it to one of 4 possible 

complex values represented by its, I (real) and Q (imaginary) cannel values. 

 

Input Bit (b0) I-Out 

0 -1 

1 1 
 

Input Bit (b1) Q-Out 

0 -1 

1 1 
 

 

Table B.2: QPSK encoding table 
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Figure B.2: QPSK constellation bit encoding 

 

B.3 16-Quadrature Amplitude Modulation (16-QAM) encoding 

 

A 16-QAM encoder takes four digital data bits (b0b1b2b3) and converts it to one of 16 

possible complex values represented by their I (real) and Q (imaginary) cannel values. 

 

Input Bit (b0b1) I-Out 

00 -3 

01 -1 

10 1 

11 3 

. 

 

Input Bit (b2b3) Q-Out 

00 -3 

01 -1 

10 1 

11 3 
 

Table B.3: 16-QAM encoding table 

 

 
Figure B.3: 16-QAM constellation bit encoding 
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B.4 64-Quadrature Amplitude Modulation (QAM-64) encoding 

 

A QAM-64 encoder takes six digital data bits (b0b1b2b3b4b5) and converts it to one of 

64 possible complex values represented by their I (real) and Q (imaginary) cannel 

values. 

 

Input Bit (b0b1 b2) I-Out 

000 -7 

001 -5 

010 -3 

011 -1 

100 1 

101 3 

110 5 

111 7 
 

 

Input Bit (b3b4b5) Q-Out 

000 -7 

001 -5 

010 -3 

011 -1 

100 1 

101 3 

110 5 

111 7 
 

 

Table B.4: QAM-64 encoding table 
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Figure B.4: 64-QAM constellation bit encoding 
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Appendix C 
  

SDR OFDM Program Details 
  
C.1 The OFDM Specification Structure Details 

 

The OFDM specification structure buffers and variables are shown in Table C.1.  

 

Structure Name OFDM_Specification_struct 

Variable 

Type 

Variable Name Variable Description 

Integer Fs The Sampling Frequency value 

Integer FcMax The Maximum Usable Frequency 

Integer Ntotal Total Amount of Sub-carriers 

Integer Nst Total Amount of used Sub-carriers 

Integer Nsd Total Amount of Data Sub-carriers 

Integer Nsp Total Amount of Reference Sub-carriers 

Float DeltaF Sub-Carrier Frequency Spacing 

Float Tfft Length of a pre-GI symbol (3.2us) 

Float  Tgi Guard interval length (0.8us) 

Float Tgi2 Guard interval of Long preambles length (1.6us) 

Float Tsignal Length of the signal symbol 

Float Tlongpreamble Length of the long preamble (8us) 

Float Tshortpreamble Length of the short preamble (8us) 

Integer Nfft Amount of samples in a OFDM symbol 

Integer Ngi Amount of samples in a symbol guard interval 

Integer Ngi2 Amount of samples in a long preamble GI 

Integer Nsignal Amount of samples in a OFDM symbol with its GI 

Integer Nlongpreamble Amount of samples in long preamble 

Integer Nshortpreamble Amount of samples in a short preamble 

Integer BitsPerSubCarrier Amount of bits encoded in each OFDM sub-carrier 
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Structure Name OFDM_Specification_struct 

Variable 

Type 

Variable Name Variable Description 

Integer *pDataCarrier 

Positions 

Pointer to an array that stores the positions of the 

data sub-carriers in an OFDM symbol 

Integer *pRefCarrier 

Positions 

Pointer to an array that stores the positions of the 

reference sub-carriers in an OFDM symbol 

Float *pDataAndRef 

PhaseValues 

Pointer to an array the stores the phase values of 

the data and reference sub-carriers 

Float *pDataAndRef 

MagnValues 

Pointer to an array that stores the magnitude values 

of the data and reference sub-carriers 

Float *pDataAndRef 

RealValues 

Pointer to an array that stores the real values of the 

data and reference sub-carriers 

Float *pDataAndRef 

ImagValues 

Pointer to an array that stores the imaginary values 

of the data and reference sub-carriers 

Float Construction 

Magnitude 

The standard magnitude value of all the data and 

reference sub-carriers 

Float *pRefRealValues Pointer to an array that stores the real values of the 

reference sub-carriers 

Float *pRefImagValues Pointer to an array that stores the imaginary values 

of the reference sub-carriers 

Float *pLongPreamble 

ImagPosValues 

Pointer to an array that stores the imaginary 

positive frequency values for the long preamble 

Float *pLongPreamble 

ImagNegValues 

Pointer to an array that stores the imaginary 

negative frequency values for the long preamble 

Float *pLongPreamble 

RealPosValues 

Pointer to an array that stores the real positive 

frequency values for the long preamble 

Float *pLongPreamble 

RealNegValues 

Pointer to an array that stores the real negative 

frequency values for the long preamble 

Float LongPreamble 

Multiplier 

A long preamble amplitude multiplier 

(Debugging) 
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Structure Name OFDM_Specification_struct 

Variable 

Type 

Variable Name Variable Description 

Float MyLongPreamble 

Multiplier 

Another long preamble amplitude multiplier 

(Debugging) 

Float *pLongPreamble 

RealTimeArray 

Pointer to an array that stores the real time domain 

part of the long preamble 

Float *pLongPreamble 

ImagTimeArray 

Pointer to an array that stores the imaginary time 

domain part of the long preamble 

Float *pShortPreamble 

ImagPosValues 

Pointer to an array that stores the imaginary 

positive frequency values for the short preamble 

Float *pShortPreamble 

ImagNegValues 

Pointer to an array that stores the imaginary 

negative frequency values for the short preamble 

Float *pShortPreamble 

RealPosValues 

Pointer to an array that stores the real positive 

frequency values for the short preamble 

Float *pShortPreamble 

RealNegValues 

Pointer to an array that stores the real negative 

frequency values for the short preamble 

Float ShortPreamble 

Multiplier 

A short preamble amplitude multiplier 

(Debugging) 

Float MyShortPreamble 

Multiplier 

Another short preamble amplitude multiplier 

(Debugging) 

Float *pTempShortPream

bleRealTimeArray 

Pointer to an array that temporarily stores the real 

time domain part of the short preamble 

Float *pTempShortPream

bleImagTimeArray 

Pointer to an array that temporarily stores the 

imaginary time domain part of the short preamble 

Float *pShortPreamble 

RealTimeArray 

Pointer to an array that stores the real time domain 

part of the short preamble 

Float *pShortPreamble 

ImagTimeArray 

Pointer to an array that stores the imaginary time 

domain part of the short preamble 

Float *pLongPreamble 

GIRealTimeArray 

Pointer to an array that stores the guard interval of 

the real time domain part of the long preamble 
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Structure Name OFDM_Specification_struct 

Variable 

Type 

Variable Name Variable Description 

Float *pLongPreamble 

GIImagTimeArray 

Pointer to an array that stores the guard interval of 

the imaginary time domain of the long preamble 

Float *pSignalRealTime 

Array 

Pointer to an array that stores the real time domain 

part of the signal symbol 

Float *pSignalImagTime 

Array 

Pointer to an array that stores the imaginary time 

domain part of the signal symbol 

Float *pSignalRealGITi

meArray 

Pointer to an array that stores the real time domain 

part of the signal symbol guard interval 

Float *pSignalImagGITi

meArray 

Pointer to an array that stores the imaginary time 

domain part of the signal symbol guard interval 

Float *pSignalwithGIRea

lTimeArray 

Pointer to an array that stores the real time domain 

part of the signal symbol with its guard interval 

Float *pSignalwithGIIma

gTimeArray 

Pointer to an array that stores the imaginary time 

domain of the signal symbol guard interval with its 

guard interval 

Float *pLongPreamble1

Magn; 

Pointer to an array that stores the first received 

long preamble frequency spectrum magnitudes 

Float *pLongPreamble2

Magn; 

Pointer to an array that stores the second received 

long preamble frequency spectrum magnitudes 

Float *pLongPreambleM

eanMagn; 

Pointer to an array that stores the mean received 

long preamble frequency spectrum magnitudes 

Float *pInverseChannelF

ilter; 

Pointer to an array that stores the inverse channel 

transfer function filter, estimated from the long 

preamble frequency spectrum magnitudes 

Long 

double 

**DFT_Wreal Pointer to a matrix of real value twiddle factors for 

the DFT function 

Long 

double 

**DFT_Wimag Pointer to a matrix of imaginary value twiddle 

factors for the DFT function 
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Structure Name OFDM_Specification_struct 

Variable 

Type 

Variable Name Variable Description 

Long 

double 

** IDFT_Wimag Pointer to a matrix of imaginary value twiddle 

factors for the IDFT function 

Float *pRealTimeArray Pointer to an array that stores the real time domain 

signal for use by the DFT/IDFT function 

Float *pImagTimeArray Pointer to an array that stores the imaginary time 

domain signal for use by the DFT/IDFT function 

Float *pRealFreqArray Pointer to an array that stores the real frequency 

spectrum for use by the DFT/IDFT function 

Float *pImagFreqArray Pointer to an array of the imaginary frequency 

spectrum for use by the DFT/IDFT function 

Float *pMagnFreqArray Pointer to an array of magnitude frequency 

spectrum for use by the DFT/IDFT function 

Float *pPhaseFreqArray Pointer to an array of the phase frequency 

spectrum for use by the DFT/IDFT function 

Int Is_OFDM_Specs_I

nitiated 

Equal 1 if the OFDM specification structure has 

been initiated 

 

Table C.1: The OFDM Specification Structure Details 

 

C. 2 The OFDM Transmitter Structure Details 

 

The OFDM transmitter structure buffers and variables are shown in Table C.2.  

 

Structure Name OFDM_Transmitter_struct 

Variable 

Type 

Variable 

Name 

Variable Description 

Boolean TransmitImage Is true if we are going to transmit an image 

Boolean TransmitData Is true if we are going to transmit a test data 
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Structure Name OFDM_Transmitter_struct 

Variable 

Type 

Variable Name Variable Description 

Boolean TransmitImageIs 

Loaded 

Is true if the transmit image is already loaded 

Boolean TransitDataIs 

Loaded 

Is true if the transmit test data packet is already 

loaded 

Integer TotalBytes Stores the amount of bytes in the transmission 

Integer TotalBits Stores the amount of bits in the transmission 

Integer TotalSymbols Stores the amount of IEEE 802.11a OFDM data 

symbols in the transmission 

Integer TotalBitsPer 

Symbol 

Stores the amount of bits we encode per OFDM 

data symbol 

Byte *pImageBytes Pointer to an array that stores the transmission 

bytes 

Byte *PimageBits Pointer to an array that stores the transmission bits 

Integer Entire_Transmissio

n_Length 

Stores the entire transmission sample length 

Float *pEntire_Transmiss

ion_I 

Pointer to an array that stores the entire 

transmission real (I-channel) samples 

Float *pEntire_Transmiss

ion_Q 

Pointer to an array that stores the entire 

transmission imaginary (Q-channel) samples 

Float *pSymbol_I Pointer to an array that stores a temporary OFDM 

symbol (I-channel) 

Float *pSymbol_Q Pointer to an array that stores a temporary OFDM 

symbol (Q-channel) 

Ansi 

String 

TransmitFilename The Filename of the file that contains the data we 

want to transfer 

Boolean GotTransmit 

Filename 

True if the GUI retrieved a valid filename 

char TransmitFilename 

Char[1024] 

Array of chars that stores the filename 
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Structure Name OFDM_Transmitter_struct 

Variable 

Type 

Variable Name Variable Description 

char *prtTransmitFile 

CharStr 

Pointer to the character string that stores the 

transmit filename 

Float SNR The Signal-to-noise ratio of the AWGN to be 

added to the transmission 

Float Vratio The linear ratio of signal to noise of the AWGN 

Bool Is_Noise_Added True if AWGN has been added to the signal 

Bool Is_OFDM_Transmi

tter_Initiated 

True if the OFDM transmitter structure has been 

initiated 

Bool Is_OFDM_Output_

Data_Initiated 

True if the transmission data has been loaded 

Bool Is_OFDM_Encodin

g_Complete 

True if the OFDM encoding is complete 

 

Table C.2: The OFDM Transmitter Structure Details 

 

C. 3 The OFDM Receiver Structure Details 

 

The OFDM receiver structure buffers and variables are shown in Table C.3.  

 

Structure Name OFDM_Receiver_struct 

Variable 

Type 

Variable Name Variable Description 

Boolean TransmitImage Is true if we are going to receive an image 

Boolean TransmitData Is true if we are going to receive a test data 

Integer ReceiveBufferTime

Length 

The receiving buffer length in seconds 

Integer TotalBytes The amount of bytes we expect to receive 

Integer TotalBits The amount of bits we expect to receive 
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  Structure Name OFDM_Receiver_struct 

Variable 

Type 

Variable Name Variable Description 

Integer TotalSymbols The total amount of IEEE 802.11a OFDM data 

symbols to expect in the transmission 

Integer TotalBitsPer 

Symbol 

The total amount of bits that can be encoded into 

one of out IEEE 802.11a OFDM data symbols 

Integer Entire_Trans 

mission_Length 

The Length in samples of the Entire transmission 

array 

Float *pEntire_Transmiss

ion_I 

Pointer to an array that stores the samples of the 

receiving transmission (I-channel) 

Float *pEntire_Transmiss

ion_Q 

Pointer to an array that stores the samples of the 

receiving transmission (Q-channel) 

Integer ET_Poll_Loc The position in the transmission we are polling 

during the decoding cycle 

Integer KeepIndex The Index number from which point we want to 

save the rest of the primary buffer at the next entire 

transmission array polling  

Integer PrimBufferSize The length of the primary decoding buffer 

Float *pPrimBuffer_I Pointer to the primary decoding array (I-channel) 

Float *pPrimBuffer_Q Pointer to the primary decoding array (Q-channel) 

Integer AmountOfTimesIn

State1 

Stores the amount of times the decoding state 

machine was in state 1 

Integer AmountOfTimesIn

State2 

Stores the amount of times the decoding state 

machine was in state 2 

Integer AmountOfTimesIn

State3 

Stores the amount of times the decoding state 

machine was in state 3 

Integer AmountOfTimesIn

State4 

Stores the amount of times the decoding state 

machine was in state 4 

Ansi 

String 

ReceiveFilename Stores the name of the file that contains the 

receiving signal 
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  Structure Name OFDM_Receiver_struct 

Variable 

Type 

Variable Name Variable Description 

Boolean GotReceive 

Filename 

True if the demo GUI successfully retrieved the 

filename of the receiving file 

Char ReceiveFilename 

Char[1024 

Array of chars containing the receive filename 

Char *ptrReceiveFile 

CharStr 

Pointer to the array that stores the filename of the 

receiving filename 

Boolean ReceiveFileIsA 

DataFile 

True if the file we want to load is a data file 

Boolean ReceiveFileIsA 

WaveFil 

True if the file we want to load is a wave file 

Integer  State The decoder state machine current state 

Boolean StopFileDecoder True if we want to stop the decoder state machine 

Integer TimeInLastState The amount of times spent in the previous state 

Float State1_Threshold State 1 signal level threshold 

Integer Threshold_ 

Location 

State 1 threshold exceeded locations 

Float *SP10_xcorr_ 

Results_I 

Pointer to array that stores the result of the cross 

correlation of the receiving primary buffer and the 

10 short preambles (I-channel) 

Float *SP10_xcorr_Resul

ts_Q 

Pointer to array that stores the result of the cross 

correlation of the receiving primary buffer and the 

10 short preambles (Q-channel) 

Float *LP2_xcorr_ 

Results_I 

Pointer to array that stores the result of the cross 

correlation of the receiving primary buffer and the 

2 long preambles (I-channel) 

Float *LP2_xcorr_ 

Results_Q 

Pointer to array that stores the result of the cross 

correlation of the receiving primary buffer and the 

2 long preambles (Q-channel) 
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  Structure Name OFDM_Receiver_struct 

Variable 

Type 

Variable Name Variable Description 

Float *SP10_LP2_ 

xcorr_Results_I 

Pointer to array that stores the result of the cross 

correlation of the receiving primary buffer and the 

10 short and 2 long preambles (I-channel) 

float *SP10_LP2_ 

xcorr_Results_Q 

Pointer to array that stores the result of the cross 

correlation of the receiving primary buffer and the 

10 short and 2 long preambles (Q-channel) 

Integer SP10_xcorr_Result

s_Length 

Sample length of the SP10_xcorr_Results 

 (I and Q –channel) 

Integer LP2_xcorr_Results

_Length 

Sample length of the LP2_xcorr_Results 

 (I and Q –channel) 

Integer SP10_LP2_xcorr_R

esults_Length 

Sample length of the SP10_LP2_xcorr_Results 

 (I and Q –channel) 

Float *SP10_I Pointer to array that stores 10 short preambles  

(I-channel) 

Float *SP10_Q Pointer to array that stores 10 short preambles  

(Q-channel) 

Float *LP2_I Pointer to array that stores 2 long preambles  

(I-channel) 

Float *LP2_Q Pointer to array that stores 2 long preambles  

(Q-channel) 

Float *SP10_LP2_I Pointer to array that stores 10 short and 2 long 

preambles (I-channel) 

Float *SP10_LP2_Q Pointer to array that stores 10 short and 2 long 

preambles (Q-channel) 

Float SP10_I_xcorr_ 

best_value 

Stores the value of the peak in the 10 short 

preamble cross correlation result (I-channel) 

Integer SP10_I_xcorr_best

_index 

Stores the location of the peak in the 10 short 

preamble cross correlation result (I-channel) 
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  Structure Name OFDM_Receiver_struct 

Variable 

Type 

Variable Name Variable Description 

Float SP10_Q_xcorr_ 

best_value 

Stores the value of the peak in the 10 short 

preamble cross correlation result (Q-channel) 

Integer SP10_Q_xcorr_ 

best_index 

Stores the location of the peak in the 10 short 

preamble cross correlation result (Q-channel) 

Float LP2_I_xcorr_ 

best_value 

Stores the value of the peak in the 2 long preamble 

cross correlation result (I-channel) 

Integer LP2_I_xcorr_ 

best_index 

Stores the location of the peak in the 2 long 

preamble cross correlation result (I-channel) 

Float  LP2_Q_xcorr_ 

best_value 

Stores the value of the peak in the 2 long preamble 

cross correlation result (Q-channel) 

Integer LP2_Q_xcorr_ 

best_index 

Stores the location of the peak in the 2 long 

preamble cross correlation result (Q-channel) 

Float SP10_LP2_I_xcorr

_best_value 

Stores the value of the peak in the 10 short and 2 

long preamble cross correlation result (I-channel) 

Integer SP10_LP2_I_xcorr

_best_index 

Stores the location of the peak in the 10 short and 2 

long preamble cross correlation result (I-channel) 

Float SP10_LP2_Q_xcor

r_best_value 

Stores the value of the peak in the 10 short and 2 

long preamble cross correlation result (Q-channel) 

Integer SP10_LP2_Q_xcor

r_best_index 

Stores the location of the peak in the 10 short and 2 

long preamble cross correlation result (Q-channel) 

Integer SP_Pos The location of the short preamble 

Integer LP1_Pos The location of the first long preamble 

Integer LP2_Pos The location of the second long preamble 

Integer Signal_Pos The location of the signal symbol 

Integer NextDataSymbol_ 

Pos 

The location of the next data symbol 

Integer Data_Phases_In_ 

S_Locs_Neg[24] 

Negative frequency spectrum locations of the data 

phases in OFDM symbols 
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  Structure Name OFDM_Receiver_struct 

Variable 

Type 

Variable Name Variable Description 

Integer Data_Phases_In_ 

S_Locs_Pos[24]; 

Positive frequency spectrum locations of the data 

phases in OFDM symbols 

Integer Data_Phases_In_ 

CPP_Locs_Neg[24]

Negative frequency spectrum locations in an C++ 

array of the data phases in OFDM symbols 

Integer Data_Phases_In_ 

CPP_Locs_Pos[24] 

Positve frequency spectrum locations in an C++ 

array of the data phases in OFDM symbols 

Byte *ReceivedBytes Pointer to an array of the decoded data bytes 

Integer NextReceived 

ByteIndex 

Index to the location of the next data byte in the 

*ReceivedBytes array 

Byte *ReceivedBits Pointer to an array of the decoded data bits 

Integer NextReceiveBit 

Index 

Index to the location of the next data bit in the 

*ReceivedBites array 

Float *NoRecord Pointer to a array that stores each sub-sample offset 

during the decoding process 

Integer SymbolsReceived Stores the amount of decoded OFDM data symbols 

Integer DecodingComplete Equals 1 if decoding is complete 

Integer *CarrierBitErrors; Pointer to an array that stores the amount of bits 

errors in each sub-carriers 

Integer LastSymbol 

BeforeAdjustment 

The Symbol number of the last time we did a 

sample shift adjustment 

Integer NoGradient Estimated gradient of the sub-sample offset change 

Boolean GotNoGradient True when a valid gradient has been estimated 

Boolean RefCarrierPhase 

Comp 

True when Reference Carrier Phase Compensation 

has been enabled 

Boolean Is_OFDM_ 

Receiver_Initiated 

True when the OFDM receiver structure has been 

initiated 

 

Table C.3: The OFDM Receiver Structure Details 
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C. 4 The OFDM Comparer Structure Details 

 

The OFDM comparer structure buffers and variables are shown in Table C.4.  

 

  Structure Name OFDM_Comparer_struct 

Variable 

Type 

Variable Name Variable Description 

Char *ptrCompare 

FileCharStr 

Pointer to an array of chars that store the compare 

filename 

Char CompareFilename 

Char[1024]; 

Array of chars that store the compare filename 

Ansi 

String 

CompareFilename The compare filename 

Boolean GotCompare 

Filename 

True when the GUI successfully retrieved the 

compare filename 

Boolean CompareFileIs 

Image 

True if the compare file is an image 

Boolean CompareFileIsData True if the compare file is an data file 

Boolean CompareFile 

Loaded 

True if the compare file a has been loaded 

Byte *pCompareBytes Pointer to an array that stores all the comparative 

bytes 

Byte *pCompareBits Pointer to an array that stores all the comparative 

bits 

Integer TotalBits Total amount of bits that was compared 

Integer TotalErrorBits Total amount of incorrect compare bits 

Float BER Bit Error Rate of received data 

 

Table C.4: The OFDM Comparer Structure Details 
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C. 5 The OFDM Audio Structure Details 

 

The OFDM audio structure buffers and variables are shown in Table C.5.  

 

  Structure Name OFDM_Audio_struct 

Variable 

Type 

Variable Name Variable Description 

Boolean AudioInited True if sound device has been initiated 

Boolean AudioPortInit 

ErrorFound 

True if AudioPort external library has an error 

Integer AudioPortDevices Amount of available sound devices detected 

Integer SelectedAudioPort 

Device 

Currently selected audio device 

Const PaDeviceInfo [*AudioPortDeviceIndo] Selected device info 

linked to outside library 

Boolean Is_OFDM_Audio_ 

Initiated; 

True if OFDM audio structure has been initiated 

Boolean Is_OFDM_Audio_

Device_Selected 

True if a sound device has been selected 

Boolean Is_OFDM_Audio_

Ready_To_Start; 

True is audio is ready! 

 

Table C.5: The OFDM Audio Structure Details 
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C. 6 The Main OFDM Library Functions 

 

The main OFDM library functions are shown in Table C.6.  

 

Library Name OFDM 

Function Name Function Description 

OFDM_WF(.) Writes a float array to file (debugging only) 

OFDM_Initiate_ 

Specifications() 

Initiated OFDM specifications buffer 

Clean_CleanAllTimeBuffers() Clean the DFT/IDFT time buffers 

Clean_CleanAllFreqBuffers() Clean the DFT/IDFT frequency buffers 

OFDM_Initiate_All() Calls initiation sub-functions 

DFT_IDFT() The IDFT function 

DFT_DFT() The DFT function 

FFT_Convert_RealAndImag_ 

To_MagnAndPhase() 

Convert the real and imaginary frequency 

spectrum into magnitude and phase values 

FFT_Create_Twiddle_Factors() Create the DFT/IDFT twiddle factors 

OFDM_Create_Long_Preamble() Creates the IEEE 802.11a long preamble 

OFDM_Create_Long_ 

Preamble_GI() 

Creates the IEEE 802.11a long preamble guard 

interval 

OFDM_Create_Short_Preamble() Creates the IEEE 802.11a short preamble 

 

Table C.6: The main OFDM library functions  

 

C. 7 The OFDM Math Library Functions 

 

The OFDM math library functions are shown in Table C.7.  

 

Library Name OFDM_math 

Function Name Function Description 

Math_CrossCorrelation() Calculates the cross correlation between two input 

float-type buffers 

 

 195



_ 

Library Name OFDM_math 

Function Name Function Description 

Math_MaxBufferValue() Returns the maximum value inside a float-type array 

Math_MaxBufferIndex() Returns the index of the maximum value inside a 

float-type array 

Math_MinBufferValue() Returns the minimum value inside a float-type array 

Math_MinBufferIndex() Returns the index of the minimum value inside a 

float-type array 

Math_RMSBufferValue() Returns the Root-Mean-Square (RMS) value of a 

float-type array 

Math_QPSK_PhaseTo2Bits() Demodulates a QPSK phase into 2 bits 

Math_QPSK_PhaseTo2Bits 

Array() 

Demodulates an array of QPSK phases into a array 

of bits 

Math_BitToInt() Converts a 8-bit binary array into an integer value 

Math_BitStreamToByteStrea

m() 

Converts a 8-bit binary array stream into a integer 

array 

Math_QPSK_2BitsToPhase() Modulates 2 bits into a QPSK phase 

Math_QPSK_2BitToPhase 

Array() 

Modulates an array of bits into an array pg QPSK 

phases 

Math_IntToBit() Converts a integer value into a 8-bit binary array 

Math_IntToCustomBit() Converts a integer value into a N-bit binary array 

Math_Round() Rounds a float value into an integer 

Math_Reverse_Array() Returns the inverse of the input float-type array 

Conjugate_Array() Returns the negative of the input float-type array 

Math_FloatTo2Byte() Convert a 16-bit float-type value into 2 bytes 

Math_2ByteToFloat() Convert 2 bytes into a 16-bit float-type value 

Math_AbsFloat() Returns the absolute of a float-type value 

Math_Phase2Quad Returns the quadrant the input phase is located in. 

Math_AmountOfDifferences 

InArrays() 

Returns the amount of differences between two 

Integer-type arrays 

Math_DistanceToZero() Unwraps and calculates the distance from the input 

phase to zero 
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Library Name OFDM_math 

Function Name Function Description 

Math_DistanceTo180() Unwraps and calculates the distance from the input 

phase to 180 degrees 

 

Table C.7: The OFDM Math library functions  

 

C. 8 The OFDM Transmitter Library Functions 

 

The OFDM transmitter library functions are shown in Table C.8.  

 

Library Name OFDM_transmitter 

Function Name Function Description 

OFDM_Transmitter_Init_ 

Image_Transmitter 

Initiates the OFDM transmitter structure for the 

transmission of an test image file 

OFDM_Transmitter_Init_ 

Data_Transmitter 

Initiates the OFDM transmitter structure for the 

transmission of a test data packet 

OFDM_Transmitter_ 

GetTransmitFilename 

Retrieve the transmitter filename using a file dialog 

box 

OFDM_Transmitter_Load_ 

Transmit_File 

Load the transmitter file 

OFDM_Transmitter_Add_Pre

ambles 

Adds the IEEE 802.11a preambles to the 

transmission buffer 

OFDM_Transmitter_DataPha

ses_To_Complete_Symbol 

A function that converts data phases into complete 

IEEE 802.11a OFDM data symbols 

OFDM_Transmitter_Add_ 

Signal 

Adds the IEEE 802.11a signal symbol to the 

transmission buffer 

OFDM_Transmitter_Encode Encodes the transmission data into IEEE 802.11a 

OFDM data symbols 

OFDM_Transmitter_Add_ 

Data 

Adds the encoded OFDM data symbols to the 

transmission buffer 
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Library Name OFDM_transmitter 

Function Name Function Description 

OFDM_Transmitter_Save_Tr

ansmission_To_Custom_File 

Saves the transmission buffer to a local file 

OFDM_Transmitter_Add_Noi

se 

Adds AWGN to the transmission buffer 

 

Table C.8: The OFDM Transmitter library functions  

 

C. 9 The OFDM Receiver Library Functions 

 

The OFDM receiver library functions are shown in Table C.9.  

 

Library Name OFDM_receiver 

Function Name Function Description 

Receiver_WB Writes a Byte-type buffer to file (debugging) 

Receiver_WF Writes a float-type buffer to file (debugging) 

OFDM_Receiver_UpdateIma

ge 

Updates the received and decoded image on the GUI 

OFDM_Receiver_Init_Setup_

Variables 

Receiver structure initialisations: Setup all the 

variables used in the receiver 

OFDM_Receiver_Init_Create

_Buffers 

Receiver structure initialisations: Create all the 

buffers used in the receiver 

OFDM_Receiver_Init_Clear_

Buffers 

Receiver structure initialisations: Clear all the 

buffers used in the receiver 

OFDM_Receiver_Init_Fill_B

uffers 

Receiver structure initialisations: Fill all the buffers 

used in the receiver 

OFDM_Receiver_Init_Image

_Receiver 

Receiver structure initialisations: Initialise the 

receiver to receive test images 

OFDM_Receiver_Init_Data_

Receiver 

Receiver structure initialisations: Initialise the 

receiver to receive test data packets 
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Library Name OFDM_receiver 

Function Name Function Description 

OFDM_Receiver_State3 OFDM decoder state machine state 3  (Information 

extraction from long preamble and signal symbol) 

OFDM_Receiver_State2 OFDM decoder state machine state 2 

(Initial OFDM symbol synchronisation) 

OFDM_Receiver_State1 OFDM decoder state machine state 1  

(Signal threshold detector) 

OFDM_Receiver_Create_ 

Freq_Shifts 

Create phase shifts from different sub-sample 

offsets 

OFDM_Receiver_Add_ 

Freq_Shifts 

Add the received reference carriers to the phase 

shifts 

OFDM_Receiver_ 

Reference_Freq_Shifts 

Reference all the sub-sample influenced phases to 

zero degrees 

OFDM_Receiver_Calc_ 

Smallest_Distances 

Determine which sub-sample influenced phase 

performs the best and returns the result 

OFDM_Receiver_Calculate_ 

SubSample_Offset 

Container function which calculates the best sub-

sample offset for a given reference carriers and 

sub-sample offset range 

OFDM_Receiver_State4 OFDM decoder state machine state 4   

(Data Symbol Decoding) 

OFDM_Receiver_Decode_ 

Buffer 

OFDM decoder state machine 

OFDM_Receiver_ 

GetReceiveFilename 

Function which returns the receiver file filename 

using a file dialog box in the demo GUI 

OFDM_Receiver_LoadTransmi

ssion_From_CustomFile 

Loads the transmission data from a custom data file

OFDM_Receiver_LoadTransmi

ssionSize_From_CustomFile 

Loads the transmission data size from a custom 

data file 
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Library Name OFDM_receiver 

Function Name Function Description 

OFDM_Receiver_LoadTrans 

mission_From_WaveFile 

Loads the transmission data from a wave file 

OFDM_Receiver_LoadTrans 

missionSize_From_WaveFile 

Loads the transmission data size from a wave file 

OFDM_Receiver_Start_ 

Decode_From_File 

Container function, starts the OFDM decoding 

after data has been loaded from file 

OFDM_Receiver_Start_ 

Decode_From_SoundBuffer 

Container function, starts the OFDM decoding 

after data has been received from the sound device 

 

Table C.9: The OFDM Receiver library functions  

 

C.10 The OFDM Comparer Library Functions 

 

The OFDM comparer library functions are shown in Table C.10.  

 

Library Name OFDM_comparer 

Function Name Function Description 

OFDM_Comparer_Get 

CompareFilename 

Retrieves the comparative filename using a file 

dialog box in the demo GUI 

OFDM_Comparer_Load_ 

Data_File 

Loads the comparative data if it’s a test data packet 

OFDM_Comparer_Load 

CompareFile 

Loads the comparative data if it’s a test image 

OFDM_Comparer_Compare Compare the received data to the comparative data 

 

Table C.10: The OFDM Comparer library functions  
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C.11 The OFDM Audio Library Functions 

 

The OFDM audio library functions are shown in Table C.11.  

 

Library Name OFDM_audio 

Function Name Function Description 

Audio_Initiate_Audio Initiates the OFDM audio structure and audio 

device 

Audio_Change_Audio_Device_

With_ComboBox 

Change the currently selected audio device using 

the combo box on the GUI 

Audio_Data_ 

Transmission_Callback 

Callback function which transmits signals over the 

sound device 

Audio_Play_Transmission Container function which plays back transmissions 

over the sound device 

Audio_Play_Calibration Transmits full volume sine wave to calibrate the 

volume controls 

Audio_Data_Record_Callback Callback function which records signals from the 

sound device 

Audio_Record_Calibration Records the calibration signals and calls the 

evaluations function 

Audio_Record_Calibration_ 

Evaluation 

Evaluates the received calibration signal 

Audio_Record_Transmission Records incoming data transmissions 

 

Table C.11: The OFDM Audio library functions 
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Appendix D 
  

SDR OFDM Included CD 
  

D.1 SDR OFDM Included CD 

 

The CD included with this thesis contains the following: 

 

• The complete IEEE 802.11a transceiver C++ source code.  

• The complete IEEE 802.11a GUI Demo program. 

• Some Matlab OFDM debugging programs. 

• All the test images used in the performance testing. 

• All the test data packets used in the performance testing. 

• This thesis. 

• The IEEE 802.11a specifications. 

• Other useful OFDM related documentation. 
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